class Fiber
Fibers are primitives for implementing light weight cooperative concurrency in Ruby. Basically they are a means of creating code blocks that can be paused and resumed, much like threads. The main difference is that they are never preempted and that the scheduling must be done by the programmer and not the VM.
As opposed to other stackless light weight concurrency models, each fiber comes with a stack. This enables the fiber to be paused from deeply nested function calls within the fiber block. See the ruby(1) manpage to configure the size of the fiber stack(s).
When a fiber is created it will not run automatically. Rather it must be explicitly asked to run using the Fiber#resume
method. The code running inside the fiber can give up control by calling Fiber.yield
in which case it yields control back to caller (the caller of the Fiber#resume
).
Upon yielding or termination the Fiber
returns the value of the last executed expression
For instance:
fiber = Fiber.new do Fiber.yield 1 2 end puts fiber.resume puts fiber.resume puts fiber.resume
produces
1 2 FiberError: dead fiber called
The Fiber#resume
method accepts an arbitrary number of parameters, if it is the first call to resume
then they will be passed as block arguments. Otherwise they will be the return value of the call to Fiber.yield
Example:
fiber = Fiber.new do |first| second = Fiber.yield first + 2 end puts fiber.resume 10 puts fiber.resume 1_000_000 puts fiber.resume "The fiber will be dead before I can cause trouble"
produces
12 1000000 FiberError: dead fiber called
Non-blocking Fibers¶ ↑
The concept of non-blocking fiber was introduced in Ruby 3.0. A non-blocking fiber, when reaching a operation that would normally block the fiber (like sleep
, or wait for another process or I/O) will yield control to other fibers and allow the scheduler to handle blocking and waking up (resuming) this fiber when it can proceed.
For a Fiber
to behave as non-blocking, it need to be created in Fiber.new
with blocking: false
(which is the default), and Fiber.scheduler
should be set with Fiber.set_scheduler
. If Fiber.scheduler
is not set in the current thread, blocking and non-blocking fibers’ behavior is identical.
Ruby doesn’t provide a scheduler class: it is expected to be implemented by the user and correspond to Fiber::Scheduler
.
There is also Fiber.schedule
method, which is expected to immediately perform the given block in a non-blocking manner. Its actual implementation is up to the scheduler.
Public Class Methods
Returns the value of the fiber storage variable identified by key
.
The key
must be a symbol, and the value is set by Fiber#[]= or Fiber#store.
See also Fiber::[]=
.
static VALUE rb_fiber_storage_aref(VALUE class, VALUE key) { Check_Type(key, T_SYMBOL); VALUE storage = fiber_storage_get(fiber_current(), FALSE); if (storage == Qnil) return Qnil; return rb_hash_aref(storage, key); }
Assign value
to the fiber storage variable identified by key
. The variable is created if it doesn’t exist.
key
must be a Symbol
, otherwise a TypeError
is raised.
See also Fiber::[]
.
static VALUE rb_fiber_storage_aset(VALUE class, VALUE key, VALUE value) { Check_Type(key, T_SYMBOL); VALUE storage = fiber_storage_get(fiber_current(), value != Qnil); if (storage == Qnil) return Qnil; if (value == Qnil) { return rb_hash_delete(storage, key); } else { return rb_hash_aset(storage, key, value); } }
Forces the fiber to be blocking for the duration of the block. Returns the result of the block.
See the “Non-blocking fibers” section in class docs for details.
VALUE rb_fiber_blocking(VALUE class) { VALUE fiber_value = rb_fiber_current(); rb_fiber_t *fiber = fiber_ptr(fiber_value); // If we are already blocking, this is essentially a no-op: if (fiber->blocking) { return rb_yield(fiber_value); } else { return rb_ensure(fiber_blocking_yield, fiber_value, fiber_blocking_ensure, fiber_value); } }
Returns false
if the current fiber is non-blocking. Fiber
is non-blocking if it was created via passing blocking: false
to Fiber.new
, or via Fiber.schedule
.
If the current Fiber
is blocking, the method returns 1. Future developments may allow for situations where larger integers could be returned.
Note that, even if the method returns false
, Fiber
behaves differently only if Fiber.scheduler
is set in the current thread.
See the “Non-blocking fibers” section in class docs for details.
static VALUE rb_fiber_s_blocking_p(VALUE klass) { rb_thread_t *thread = GET_THREAD(); unsigned blocking = thread->blocking; if (blocking == 0) return Qfalse; return INT2NUM(blocking); }
Returns the current fiber. If you are not running in the context of a fiber this method will return the root fiber.
static VALUE rb_fiber_s_current(VALUE klass) { return rb_fiber_current(); }
Returns the Fiber
scheduler, that was last set for the current thread with Fiber.set_scheduler
if and only if the current fiber is non-blocking.
static VALUE rb_fiber_current_scheduler(VALUE klass) { return rb_fiber_scheduler_current(); }
Creates new Fiber
. Initially, the fiber is not running and can be resumed with resume
. Arguments to the first resume
call will be passed to the block:
f = Fiber.new do |initial| current = initial loop do puts "current: #{current.inspect}" current = Fiber.yield end end f.resume(100) # prints: current: 100 f.resume(1, 2, 3) # prints: current: [1, 2, 3] f.resume # prints: current: nil # ... and so on ...
If blocking: false
is passed to Fiber.new
, and current thread has a Fiber.scheduler
defined, the Fiber
becomes non-blocking (see “Non-blocking Fibers” section in class docs).
If the storage
is unspecified, the default is to inherit a copy of the storage from the current fiber. This is the same as specifying storage: true
.
Fiber[:x] = 1 Fiber.new do Fiber[:x] # => 1 Fiber[:x] = 2 end.resume Fiber[:x] # => 1
If the given storage
is nil
, this function will lazy initialize the internal storage, which starts as an empty hash.
Fiber[:x] = "Hello World" Fiber.new(storage: nil) do Fiber[:x] # nil end
Otherwise, the given storage
is used as the new fiber’s storage, and it must be an instance of Hash
.
Explicitly using storage: true
is currently experimental and may change in the future.
static VALUE rb_fiber_initialize(int argc, VALUE* argv, VALUE self) { return rb_fiber_initialize_kw(argc, argv, self, rb_keyword_given_p()); }
The method is expected to immediately run the provided block of code in a separate non-blocking fiber.
puts "Go to sleep!" Fiber.set_scheduler(MyScheduler.new) Fiber.schedule do puts "Going to sleep" sleep(1) puts "I slept well" end puts "Wakey-wakey, sleepyhead"
Assuming MyScheduler is properly implemented, this program will produce:
Go to sleep! Going to sleep Wakey-wakey, sleepyhead ...1 sec pause here... I slept well
…e.g. on the first blocking operation inside the Fiber
(sleep(1)
), the control is yielded to the outside code (main fiber), and at the end of that execution, the scheduler takes care of properly resuming all the blocked fibers.
Note that the behavior described above is how the method is expected to behave, actual behavior is up to the current scheduler’s implementation of Fiber::Scheduler#fiber
method. Ruby doesn’t enforce this method to behave in any particular way.
If the scheduler is not set, the method raises RuntimeError (No scheduler is available!)
.
static VALUE rb_fiber_s_schedule(int argc, VALUE *argv, VALUE obj) { return rb_fiber_s_schedule_kw(argc, argv, rb_keyword_given_p()); }
Returns the Fiber
scheduler, that was last set for the current thread with Fiber.set_scheduler
. Returns nil
if no scheduler is set (which is the default), and non-blocking fibers’ behavior is the same as blocking. (see “Non-blocking fibers” section in class docs for details about the scheduler concept).
static VALUE rb_fiber_s_scheduler(VALUE klass) { return rb_fiber_scheduler_get(); }
Sets the Fiber
scheduler for the current thread. If the scheduler is set, non-blocking fibers (created by Fiber.new
with blocking: false
, or by Fiber.schedule
) call that scheduler’s hook methods on potentially blocking operations, and the current thread will call scheduler’s close
method on finalization (allowing the scheduler to properly manage all non-finished fibers).
scheduler
can be an object of any class corresponding to Fiber::Scheduler
. Its implementation is up to the user.
See also the “Non-blocking fibers” section in class docs.
static VALUE rb_fiber_set_scheduler(VALUE klass, VALUE scheduler) { return rb_fiber_scheduler_set(scheduler); }
Yields control back to the context that resumed the fiber, passing along any arguments that were passed to it. The fiber will resume processing at this point when resume
is called next. Any arguments passed to the next resume
will be the value that this Fiber.yield
expression evaluates to.
static VALUE rb_fiber_s_yield(int argc, VALUE *argv, VALUE klass) { return rb_fiber_yield_kw(argc, argv, rb_keyword_given_p()); }
Public Instance Methods
Returns true if the fiber can still be resumed (or transferred to). After finishing execution of the fiber block this method will always return false
.
VALUE rb_fiber_alive_p(VALUE fiber_value) { return RBOOL(!FIBER_TERMINATED_P(fiber_ptr(fiber_value))); }
Returns the current execution stack of the fiber. start
, count
and end
allow to select only parts of the backtrace.
def level3 Fiber.yield end def level2 level3 end def level1 level2 end f = Fiber.new { level1 } # It is empty before the fiber started f.backtrace #=> [] f.resume f.backtrace #=> ["test.rb:2:in `yield'", "test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'", "test.rb:13:in `block in <main>'"] p f.backtrace(1) # start from the item 1 #=> ["test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'", "test.rb:13:in `block in <main>'"] p f.backtrace(2, 2) # start from item 2, take 2 #=> ["test.rb:6:in `level2'", "test.rb:10:in `level1'"] p f.backtrace(1..3) # take items from 1 to 3 #=> ["test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'"] f.resume # It is nil after the fiber is finished f.backtrace #=> nil
static VALUE rb_fiber_backtrace(int argc, VALUE *argv, VALUE fiber) { return rb_vm_backtrace(argc, argv, &fiber_ptr(fiber)->cont.saved_ec); }
Like backtrace
, but returns each line of the execution stack as a Thread::Backtrace::Location
. Accepts the same arguments as backtrace
.
f = Fiber.new { Fiber.yield } f.resume loc = f.backtrace_locations.first loc.label #=> "yield" loc.path #=> "test.rb" loc.lineno #=> 1
static VALUE rb_fiber_backtrace_locations(int argc, VALUE *argv, VALUE fiber) { return rb_vm_backtrace_locations(argc, argv, &fiber_ptr(fiber)->cont.saved_ec); }
Returns true
if fiber
is blocking and false
otherwise. Fiber
is non-blocking if it was created via passing blocking: false
to Fiber.new
, or via Fiber.schedule
.
Note that, even if the method returns false
, the fiber behaves differently only if Fiber.scheduler
is set in the current thread.
See the “Non-blocking fibers” section in class docs for details.
VALUE rb_fiber_blocking_p(VALUE fiber) { return RBOOL(fiber_ptr(fiber)->blocking); }
Terminates fiber
by raising an uncatchable exception, returning the terminated Fiber
.
If the fiber has not been started, transition directly to the terminated state.
If the fiber is already terminated, does nothing.
static VALUE rb_fiber_m_kill(VALUE self) { rb_fiber_t *fiber = fiber_ptr(self); if (fiber->killed) return Qfalse; fiber->killed = 1; if (fiber->status == FIBER_CREATED) { fiber->status = FIBER_TERMINATED; } else if (fiber->status != FIBER_TERMINATED) { if (fiber_current() == fiber) { fiber_check_killed(fiber); } else { fiber_raise(fiber_ptr(self), Qnil); } } return self; }
Raises an exception in the fiber at the point at which the last Fiber.yield
was called. If the fiber has not been started or has already run to completion, raises FiberError
. If the fiber is yielding, it is resumed. If it is transferring, it is transferred into. But if it is resuming, raises FiberError
.
With no arguments, raises a RuntimeError
. With a single String
argument, raises a RuntimeError
with the string as a message. Otherwise, the first parameter should be the name of an Exception
class (or an object that returns an Exception
object when sent an exception
message). The optional second parameter sets the message associated with the exception, and the third parameter is an array of callback information. Exceptions are caught by the rescue
clause of begin...end
blocks.
static VALUE rb_fiber_m_raise(int argc, VALUE *argv, VALUE self) { return rb_fiber_raise(self, argc, argv); }
Resumes the fiber from the point at which the last Fiber.yield
was called, or starts running it if it is the first call to resume
. Arguments passed to resume will be the value of the Fiber.yield
expression or will be passed as block parameters to the fiber’s block if this is the first resume
.
Alternatively, when resume is called it evaluates to the arguments passed to the next Fiber.yield
statement inside the fiber’s block or to the block value if it runs to completion without any Fiber.yield
static VALUE rb_fiber_m_resume(int argc, VALUE *argv, VALUE fiber) { return rb_fiber_resume_kw(fiber, argc, argv, rb_keyword_given_p()); }
Returns a copy of the storage hash for the fiber. The method can only be called on the Fiber.current
.
static VALUE rb_fiber_storage_get(VALUE self) { storage_access_must_be_from_same_fiber(self); VALUE storage = fiber_storage_get(fiber_ptr(self), FALSE); if (storage == Qnil) { return Qnil; } else { return rb_obj_dup(storage); } }
Sets the storage hash for the fiber. This feature is experimental and may change in the future. The method can only be called on the Fiber.current
.
You should be careful about using this method as you may inadvertently clear important fiber-storage state. You should mostly prefer to assign specific keys in the storage using Fiber::[]=
.
You can also use Fiber.new(storage: nil)
to create a fiber with an empty storage.
Example:
while request = request_queue.pop # Reset the per-request state: Fiber.current.storage = nil handle_request(request) end
static VALUE rb_fiber_storage_set(VALUE self, VALUE value) { if (rb_warning_category_enabled_p(RB_WARN_CATEGORY_EXPERIMENTAL)) { rb_category_warn(RB_WARN_CATEGORY_EXPERIMENTAL, "Fiber#storage= is experimental and may be removed in the future!"); } storage_access_must_be_from_same_fiber(self); fiber_storage_validate(value); fiber_ptr(self)->cont.saved_ec.storage = rb_obj_dup(value); return value; }
static VALUE fiber_to_s(VALUE fiber_value) { const rb_fiber_t *fiber = fiber_ptr(fiber_value); const rb_proc_t *proc; char status_info[0x20]; if (fiber->resuming_fiber) { snprintf(status_info, 0x20, " (%s by resuming)", fiber_status_name(fiber->status)); } else { snprintf(status_info, 0x20, " (%s)", fiber_status_name(fiber->status)); } if (!rb_obj_is_proc(fiber->first_proc)) { VALUE str = rb_any_to_s(fiber_value); strlcat(status_info, ">", sizeof(status_info)); rb_str_set_len(str, RSTRING_LEN(str)-1); rb_str_cat_cstr(str, status_info); return str; } GetProcPtr(fiber->first_proc, proc); return rb_block_to_s(fiber_value, &proc->block, status_info); }
Transfer control to another fiber, resuming it from where it last stopped or starting it if it was not resumed before. The calling fiber will be suspended much like in a call to Fiber.yield
.
The fiber which receives the transfer call treats it much like a resume call. Arguments passed to transfer are treated like those passed to resume.
The two style of control passing to and from fiber (one is resume
and Fiber::yield
, another is transfer
to and from fiber) can’t be freely mixed.
-
If the Fiber’s lifecycle had started with transfer, it will never be able to yield or be resumed control passing, only finish or transfer back. (It still can resume other fibers that are allowed to be resumed.)
-
If the Fiber’s lifecycle had started with resume, it can yield or transfer to another
Fiber
, but can receive control back only the way compatible with the way it was given away: if it had transferred, it only can be transferred back, and if it had yielded, it only can be resumed back. After that, it again can transfer or yield.
If those rules are broken FiberError
is raised.
For an individual Fiber
design, yield/resume is easier to use (the Fiber
just gives away control, it doesn’t need to think about who the control is given to), while transfer is more flexible for complex cases, allowing to build arbitrary graphs of Fibers dependent on each other.
Example:
manager = nil # For local var to be visible inside worker block # This fiber would be started with transfer # It can't yield, and can't be resumed worker = Fiber.new { |work| puts "Worker: starts" puts "Worker: Performed #{work.inspect}, transferring back" # Fiber.yield # this would raise FiberError: attempt to yield on a not resumed fiber # manager.resume # this would raise FiberError: attempt to resume a resumed fiber (double resume) manager.transfer(work.capitalize) } # This fiber would be started with resume # It can yield or transfer, and can be transferred # back or resumed manager = Fiber.new { puts "Manager: starts" puts "Manager: transferring 'something' to worker" result = worker.transfer('something') puts "Manager: worker returned #{result.inspect}" # worker.resume # this would raise FiberError: attempt to resume a transferring fiber Fiber.yield # this is OK, the fiber transferred from and to, now it can yield puts "Manager: finished" } puts "Starting the manager" manager.resume puts "Resuming the manager" # manager.transfer # this would raise FiberError: attempt to transfer to a yielding fiber manager.resume
produces
Starting the manager Manager: starts Manager: transferring 'something' to worker Worker: starts Worker: Performed "something", transferring back Manager: worker returned "Something" Resuming the manager Manager: finished
static VALUE rb_fiber_m_transfer(int argc, VALUE *argv, VALUE self) { return rb_fiber_transfer_kw(self, argc, argv, rb_keyword_given_p()); }