module Process
Module Process
represents a process in the underlying operating system. Its methods support management of the current process and its child processes.
Process Creation¶ ↑
Each of these methods creates a process:
-
Process.exec
: Replaces the current process by running a given external command. -
Process.spawn
,Kernel#spawn
: Executes the given command and returns its pid without waiting for completion. -
Kernel#system
: Executes the given command in a subshell.
Each of these methods accepts:
-
An optional hash of environment variable names and values.
-
An optional hash of execution options.
Execution Environment¶ ↑
Optional leading argument env
is a hash of name/value pairs, where each name is a string and each value is a string or nil
; each name/value pair is added to ENV
in the new process.
Process.spawn( 'ruby -e "p ENV[\"Foo\"]"') Process.spawn({'Foo' => '0'}, 'ruby -e "p ENV[\"Foo\"]"')
Output:
nil "0"
The effect is usually similar to that of calling ENV#update with argument env
, where each named environment variable is created or updated (if the value is non-nil
), or deleted (if the value is nil
).
However, some modifications to the calling process may remain if the new process fails. For example, hard resource limits are not restored.
Execution Options¶ ↑
Optional trailing argument options
is a hash of execution options.
Working Directory (:chdir
)¶ ↑
By default, the working directory for the new process is the same as that of the current process:
Dir.chdir('/var') Process.spawn('ruby -e "puts Dir.pwd"')
Output:
/var
Use option :chdir
to set the working directory for the new process:
Process.spawn('ruby -e "puts Dir.pwd"', {chdir: '/tmp'})
Output:
/tmp
The working directory of the current process is not changed:
Dir.pwd # => "/var"
File Redirection (File Descriptor)¶ ↑
Use execution options for file redirection in the new process.
The key for such an option may be an integer file descriptor (fd), specifying a source, or an array of fds, specifying multiple sources.
An integer source fd may be specified as:
-
n: Specifies file descriptor n.
There are these shorthand symbols for fds:
-
:in
: Specifies file descriptor 0 (STDIN). -
:out
: Specifies file descriptor 1 (STDOUT). -
:err
: Specifies file descriptor 2 (STDERR).
The value given with a source is one of:
-
n: Redirects to fd n in the parent process.
-
filepath
: Redirects from or to the file atfilepath
viaopen(filepath, mode, 0644)
, wheremode
is'r'
for source:in
, or'w'
for source:out
or:err
. -
[filepath]
: Redirects from the file atfilepath
viaopen(filepath, 'r', 0644)
. -
[filepath, mode]
: Redirects from or to the file atfilepath
viaopen(filepath, mode, 0644)
. -
[filepath, mode, perm]
: Redirects from or to the file atfilepath
viaopen(filepath, mode, perm)
. -
[:child, fd]
: Redirects to the redirectedfd
. -
:close
: Closes the file descriptor in child process.
See Access Modes and File Permissions.
Environment Variables (:unsetenv_others
)¶ ↑
By default, the new process inherits environment variables from the parent process; use execution option key :unsetenv_others
with value true
to clear environment variables in the new process.
Any changes specified by execution option env
are made after the new process inherits or clears its environment variables; see Execution Environment.
File-Creation Access (:umask
)¶ ↑
Use execution option :umask
to set the file-creation access for the new process; see Access Modes:
command = 'ruby -e "puts sprintf(\"0%o\", File.umask)"' options = {:umask => 0644} Process.spawn(command, options)
Output:
0644
Process Groups (:pgroup
and :new_pgroup
)¶ ↑
By default, the new process belongs to the same process group as the parent process.
To specify a different process group. use execution option :pgroup
with one of the following values:
-
true
: Create a new process group for the new process. -
pgid: Create the new process in the process group whose id is pgid.
On Windows only, use execution option :new_pgroup
with value true
to create a new process group for the new process.
Resource Limits¶ ↑
Use execution options to set resource limits.
The keys for these options are symbols of the form :rlimit_resource_name
, where resource_name is the downcased form of one of the string resource names described at method Process.setrlimit
. For example, key :rlimit_cpu
corresponds to resource limit 'CPU'
.
The value for such as key is one of:
-
An integer, specifying both the current and maximum limits.
-
A 2-element array of integers, specifying the current and maximum limits.
File Descriptor Inheritance¶ ↑
By default, the new process inherits file descriptors from the parent process.
Use execution option :close_others => true
to modify that inheritance by closing non-standard fds (3 and greater) that are not otherwise redirected.
What’s Here¶ ↑
Current-Process Getters¶ ↑
-
::argv0
: Returns the process name as a frozen string. -
::egid
: Returns the effective group ID. -
::euid
: Returns the effective user ID. -
::getpgrp
: Return the process group ID. -
::getrlimit
: Returns the resource limit. -
::gid
: Returns the (real) group ID. -
::pid
: Returns the process ID. -
::ppid
: Returns the process ID of the parent process. -
::uid
: Returns the (real) user ID.
Current-Process Setters¶ ↑
-
::egid=
: Sets the effective group ID. -
::euid=
: Sets the effective user ID. -
::gid=
: Sets the (real) group ID. -
::setproctitle
: Sets the process title. -
::setpgrp
: Sets the process group ID of the process to zero. -
::setrlimit
: Sets a resource limit. -
::setsid
: Establishes the process as a new session and process group leader, with no controlling tty. -
::uid=
: Sets the user ID.
Current-Process Execution¶ ↑
-
::abort
: Immediately terminates the process. -
::daemon
: Detaches the process from its controlling terminal and continues running it in the background as system daemon. -
::exec
: Replaces the process by running a given external command. -
::exit
: Initiates process termination by raising exceptionSystemExit
(which may be caught). -
::exit!
: Immediately exits the process. -
::warmup
: Notifies the Ruby virtual machine that the boot sequence for the application is completed, and that the VM may begin optimizing the application.
Child Processes¶ ↑
-
::detach
: Guards against a child process becoming a zombie. -
::fork
: Creates a child process. -
::kill
: Sends a given signal to processes. -
::spawn
: Creates a child process. -
::wait
,::waitpid
: Waits for a child process to exit; returns its process ID. -
::wait2
,::waitpid2
: Waits for a child process to exit; returns its process ID and status. -
::waitall
: Waits for all child processes to exit; returns their process IDs and statuses.
Process Groups¶ ↑
-
::getpgid
: Returns the process group ID for a process. -
::getpriority
: Returns the scheduling priority for a process, process group, or user. -
::getsid
: Returns the session ID for a process. -
::groups
: Returns an array of the group IDs in the supplemental group access list for this process. -
::groups=
: Sets the supplemental group access list to the given array of group IDs. -
::initgroups
: Initializes the supplemental group access list. -
::last_status
: Returns the status of the last executed child process in the current thread. -
::maxgroups
: Returns the maximum number of group IDs allowed in the supplemental group access list. -
::maxgroups=
: Sets the maximum number of group IDs allowed in the supplemental group access list. -
::setpgid
: Sets the process group ID of a process. -
::setpriority
: Sets the scheduling priority for a process, process group, or user.
Timing¶ ↑
-
::clock_getres
: Returns the resolution of a system clock. -
::clock_gettime
: Returns the time from a system clock. -
::times
: Returns a Process::Tms object containing times for the current process and its child processes.
Constants
- CLOCK_BOOTTIME
- CLOCK_BOOTTIME_ALARM
- CLOCK_MONOTONIC
- CLOCK_MONOTONIC_COARSE
- CLOCK_MONOTONIC_FAST
- CLOCK_MONOTONIC_PRECISE
- CLOCK_MONOTONIC_RAW
- CLOCK_MONOTONIC_RAW_APPROX
- CLOCK_PROCESS_CPUTIME_ID
- CLOCK_PROF
- CLOCK_REALTIME
- CLOCK_REALTIME_ALARM
- CLOCK_REALTIME_COARSE
- CLOCK_REALTIME_FAST
- CLOCK_REALTIME_PRECISE
- CLOCK_SECOND
- CLOCK_TAI
- CLOCK_THREAD_CPUTIME_ID
- CLOCK_UPTIME
- CLOCK_UPTIME_FAST
- CLOCK_UPTIME_PRECISE
- CLOCK_UPTIME_RAW
- CLOCK_UPTIME_RAW_APPROX
- CLOCK_VIRTUAL
- PRIO_PGRP
- PRIO_PROCESS
- PRIO_USER
- RLIMIT_AS
Maximum size of the process’s virtual memory (address space) in bytes.
see the system getrlimit(2) manual for details.
- RLIMIT_CORE
Maximum size of the core file.
see the system getrlimit(2) manual for details.
- RLIMIT_CPU
CPU time limit in seconds.
see the system getrlimit(2) manual for details.
- RLIMIT_DATA
Maximum size of the process’s data segment.
see the system getrlimit(2) manual for details.
- RLIMIT_FSIZE
Maximum size of files that the process may create.
see the system getrlimit(2) manual for details.
- RLIMIT_MEMLOCK
Maximum number of bytes of memory that may be locked into RAM.
see the system getrlimit(2) manual for details.
- RLIMIT_MSGQUEUE
Specifies the limit on the number of bytes that can be allocated for POSIX message queues for the real user ID of the calling process.
see the system getrlimit(2) manual for details.
- RLIMIT_NICE
Specifies a ceiling to which the process’s nice value can be raised.
see the system getrlimit(2) manual for details.
- RLIMIT_NOFILE
Specifies a value one greater than the maximum file descriptor number that can be opened by this process.
see the system getrlimit(2) manual for details.
- RLIMIT_NPROC
The maximum number of processes that can be created for the real user ID of the calling process.
see the system getrlimit(2) manual for details.
- RLIMIT_NPTS
The maximum number of pseudo-terminals that can be created for the real user ID of the calling process.
see the system getrlimit(2) manual for details.
- RLIMIT_RSS
Specifies the limit (in pages) of the process’s resident set.
see the system getrlimit(2) manual for details.
- RLIMIT_RTPRIO
Specifies a ceiling on the real-time priority that may be set for this process.
see the system getrlimit(2) manual for details.
- RLIMIT_RTTIME
Specifies limit on CPU time this process scheduled under a real-time scheduling policy can consume.
see the system getrlimit(2) manual for details.
- RLIMIT_SBSIZE
Maximum size of the socket buffer.
- RLIMIT_SIGPENDING
Specifies a limit on the number of signals that may be queued for the real user ID of the calling process.
see the system getrlimit(2) manual for details.
- RLIMIT_STACK
Maximum size of the stack, in bytes.
see the system getrlimit(2) manual for details.
- RLIM_INFINITY
- RLIM_SAVED_CUR
- RLIM_SAVED_MAX
- WNOHANG
see
Process.wait
- WUNTRACED
see
Process.wait
Public Class Methods
An internal API for fork. Do not call this method directly. Currently, this is called via Kernel#fork
, Process.fork
, and IO.popen
with "-"
.
This method is not for casual code but for application monitoring libraries. You can add custom code before and after fork events by overriding this method.
Note: Process.daemon
may be implemented using fork(2) BUT does not go through this method. Thus, depending on your reason to hook into this method, you may also want to hook into that one. See this issue for a more detailed discussion of this.
VALUE rb_proc__fork(VALUE _obj) { rb_pid_t pid = proc_fork_pid(); return PIDT2NUM(pid); }
Terminates execution immediately, effectively by calling Kernel.exit(false)
.
If string argument msg
is given, it is written to STDERR prior to termination; otherwise, if an exception was raised, prints its message and backtrace.
static VALUE f_abort(int c, const VALUE *a, VALUE _) { rb_f_abort(c, a); UNREACHABLE_RETURN(Qnil); }
Returns the name of the script being executed. The value is not affected by assigning a new value to $0.
This method first appeared in Ruby 2.1 to serve as a global variable free means to get the script name.
static VALUE proc_argv0(VALUE process) { return rb_orig_progname; }
Returns a clock resolution as determined by POSIX function clock_getres():
Process.clock_getres(:CLOCK_REALTIME) # => 1.0e-09
See Process.clock_gettime
for the values of clock_id
and unit
.
Examples:
Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :float_microsecond) # => 0.001 Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :float_millisecond) # => 1.0e-06 Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :float_second) # => 1.0e-09 Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :microsecond) # => 0 Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :millisecond) # => 0 Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :nanosecond) # => 1 Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :second) # => 0
In addition to the values for unit
supported in Process.clock_gettime
, this method supports :hertz
, the integer number of clock ticks per second (which is the reciprocal of :float_second
):
Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) # => 100.0 Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :float_second) # => 0.01
Accuracy: Note that the returned resolution may be inaccurate on some platforms due to underlying bugs. Inaccurate resolutions have been reported for various clocks including :CLOCK_MONOTONIC
and :CLOCK_MONOTONIC_RAW
on Linux, macOS, BSD or AIX platforms, when using ARM processors, or when using virtualization.
static VALUE rb_clock_getres(int argc, VALUE *argv, VALUE _) { int ret; struct timetick tt; timetick_int_t numerators[2]; timetick_int_t denominators[2]; int num_numerators = 0; int num_denominators = 0; #ifdef HAVE_CLOCK_GETRES clockid_t c; #endif VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil; VALUE clk_id = argv[0]; if (SYMBOL_P(clk_id)) { #ifdef CLOCK_REALTIME if (clk_id == RUBY_CLOCK_REALTIME) { c = CLOCK_REALTIME; goto getres; } #endif #ifdef CLOCK_MONOTONIC if (clk_id == RUBY_CLOCK_MONOTONIC) { c = CLOCK_MONOTONIC; goto getres; } #endif #ifdef CLOCK_PROCESS_CPUTIME_ID if (clk_id == RUBY_CLOCK_PROCESS_CPUTIME_ID) { c = CLOCK_PROCESS_CPUTIME_ID; goto getres; } #endif #ifdef CLOCK_THREAD_CPUTIME_ID if (clk_id == RUBY_CLOCK_THREAD_CPUTIME_ID) { c = CLOCK_THREAD_CPUTIME_ID; goto getres; } #endif #ifdef RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) { tt.giga_count = 0; tt.count = 1000; denominators[num_denominators++] = 1000000000; goto success; } #endif #ifdef RUBY_TIME_BASED_CLOCK_REALTIME if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) { tt.giga_count = 1; tt.count = 0; denominators[num_denominators++] = 1000000000; goto success; } #endif #ifdef RUBY_TIMES_BASED_CLOCK_MONOTONIC if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) { tt.count = 1; tt.giga_count = 0; denominators[num_denominators++] = get_clk_tck(); goto success; } #endif #ifdef RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) { tt.giga_count = 0; tt.count = 1000; denominators[num_denominators++] = 1000000000; goto success; } #endif #ifdef RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) { tt.count = 1; tt.giga_count = 0; denominators[num_denominators++] = get_clk_tck(); goto success; } #endif #ifdef RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) { tt.count = 1; tt.giga_count = 0; denominators[num_denominators++] = CLOCKS_PER_SEC; goto success; } #endif #ifdef RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) { const mach_timebase_info_data_t *info = get_mach_timebase_info(); tt.count = 1; tt.giga_count = 0; numerators[num_numerators++] = info->numer; denominators[num_denominators++] = info->denom; denominators[num_denominators++] = 1000000000; goto success; } #endif } else if (NUMERIC_CLOCKID) { #if defined(HAVE_CLOCK_GETRES) struct timespec ts; c = NUM2CLOCKID(clk_id); getres: ret = clock_getres(c, &ts); if (ret == -1) clock_failed("getres", errno, clk_id); tt.count = (int32_t)ts.tv_nsec; tt.giga_count = ts.tv_sec; denominators[num_denominators++] = 1000000000; goto success; #endif } else { rb_unexpected_type(clk_id, T_SYMBOL); } clock_failed("getres", EINVAL, clk_id); success: if (unit == ID2SYM(id_hertz)) { return timetick2dblnum_reciprocal(&tt, numerators, num_numerators, denominators, num_denominators); } else { return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit); } }
Returns a clock time as determined by POSIX function clock_gettime():
Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID) # => 198.650379677
Argument clock_id
should be a symbol or a constant that specifies the clock whose time is to be returned; see below.
Optional argument unit
should be a symbol that specifies the unit to be used in the returned clock time; see below.
Argument clock_id
Argument clock_id
specifies the clock whose time is to be returned; it may be a constant such as Process::CLOCK_REALTIME
, or a symbol shorthand such as :CLOCK_REALTIME
.
The supported clocks depend on the underlying operating system; this method supports the following clocks on the indicated platforms (raises Errno::EINVAL if called with an unsupported clock):
-
:CLOCK_BOOTTIME
: Linux 2.6.39. -
:CLOCK_BOOTTIME_ALARM
: Linux 3.0. -
:CLOCK_MONOTONIC
: SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4, macOS 10.12, Windows-2000. -
:CLOCK_MONOTONIC_COARSE
: Linux 2.6.32. -
:CLOCK_MONOTONIC_FAST
: FreeBSD 8.1. -
:CLOCK_MONOTONIC_PRECISE
: FreeBSD 8.1. -
:CLOCK_MONOTONIC_RAW
: Linux 2.6.28, macOS 10.12. -
:CLOCK_MONOTONIC_RAW_APPROX
: macOS 10.12. -
:CLOCK_PROCESS_CPUTIME_ID
: SUSv3 to 4, Linux 2.5.63, FreeBSD 9.3, OpenBSD 5.4, macOS 10.12. -
:CLOCK_PROF
: FreeBSD 3.0, OpenBSD 2.1. -
:CLOCK_REALTIME
: SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1, macOS 10.12, Windows-8/Server-2012.Time.now
is recommended over +:CLOCK_REALTIME:. -
:CLOCK_REALTIME_ALARM
: Linux 3.0. -
:CLOCK_REALTIME_COARSE
: Linux 2.6.32. -
:CLOCK_REALTIME_FAST
: FreeBSD 8.1. -
:CLOCK_REALTIME_PRECISE
: FreeBSD 8.1. -
:CLOCK_SECOND
: FreeBSD 8.1. -
:CLOCK_TAI
: Linux 3.10. -
:CLOCK_THREAD_CPUTIME_ID
: SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1, OpenBSD 5.4, macOS 10.12. -
:CLOCK_UPTIME
: FreeBSD 7.0, OpenBSD 5.5. -
:CLOCK_UPTIME_FAST
: FreeBSD 8.1. -
:CLOCK_UPTIME_PRECISE
: FreeBSD 8.1. -
:CLOCK_UPTIME_RAW
: macOS 10.12. -
:CLOCK_UPTIME_RAW_APPROX
: macOS 10.12. -
:CLOCK_VIRTUAL
: FreeBSD 3.0, OpenBSD 2.1.
Note that SUS stands for Single Unix Specification. SUS contains POSIX and clock_gettime
is defined in the POSIX part. SUS defines :CLOCK_REALTIME
as mandatory but :CLOCK_MONOTONIC
, :CLOCK_PROCESS_CPUTIME_ID
, and :CLOCK_THREAD_CPUTIME_ID
are optional.
Certain emulations are used when the given clock_id
is not supported directly:
-
Emulations for
:CLOCK_REALTIME
:-
:GETTIMEOFDAY_BASED_CLOCK_REALTIME
: Use gettimeofday() defined by SUS (deprecated in SUSv4). The resolution is 1 microsecond. -
:TIME_BASED_CLOCK_REALTIME
: Use time() defined by ISO C. The resolution is 1 second.
-
-
Emulations for
:CLOCK_MONOTONIC
:-
:MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
: Use mach_absolute_time(), available on Darwin. The resolution is CPU dependent. -
:TIMES_BASED_CLOCK_MONOTONIC
: Use the result value of times() defined by POSIX, thus:Upon successful completion, times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the past (for example, system start-up time).
For example, GNU/Linux returns a value based on jiffies and it is monotonic. However, 4.4BSD uses gettimeofday() and it is not monotonic. (FreeBSD uses
:CLOCK_MONOTONIC
instead, though.)The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks-per-second is defined by HZ macro in older systems.) If it is 100 and clock_t is 32 bits integer type, the resolution is 10 millisecond and cannot represent over 497 days.
-
-
Emulations for
:CLOCK_PROCESS_CPUTIME_ID
:-
:GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
: Use getrusage() defined by SUS. getrusage() is used with RUSAGE_SELF to obtain the time only for the calling process (excluding the time for child processes). The result is addition of user time (ru_utime) and system time (ru_stime). The resolution is 1 microsecond. -
:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
: Use times() defined by POSIX. The result is addition of user time (tms_utime) and system time (tms_stime). tms_cutime and tms_cstime are ignored to exclude the time for child processes. The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100, the resolution is 10 millisecond. -
:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
: Use clock() defined by ISO C. The resolution is1/CLOCKS_PER_SEC
.CLOCKS_PER_SEC
is the C-level macro defined by time.h. SUS definesCLOCKS_PER_SEC
as 1000000; other systems may define it differently. IfCLOCKS_PER_SEC
is 1000000 (as in SUS), the resolution is 1 microsecond. IfCLOCKS_PER_SEC
is 1000000 and clock_t is a 32-bit integer type, it cannot represent over 72 minutes.
-
Argument unit
Optional argument unit
(default :float_second
) specifies the unit for the returned value.
-
:float_microsecond
: Number of microseconds as a float. -
:float_millisecond
: Number of milliseconds as a float. -
:float_second
: Number of seconds as a float. -
:microsecond
: Number of microseconds as an integer. -
:millisecond
: Number of milliseconds as an integer. -
:nanosecond
: Number of nanoseconds as an integer. -
::second
: Number of seconds as an integer.
Examples:
Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID, :float_microsecond) # => 203605054.825 Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID, :float_millisecond) # => 203643.696848 Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID, :float_second) # => 203.762181929 Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID, :microsecond) # => 204123212 Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID, :millisecond) # => 204298 Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID, :nanosecond) # => 204602286036 Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID, :second) # => 204
The underlying function, clock_gettime
(), returns a number of nanoseconds. Float
object (IEEE 754 double) is not enough to represent the return value for :CLOCK_REALTIME
. If the exact nanoseconds value is required, use :nanosecond
as the unit
.
The origin (time zero) of the returned value is system-dependent, and may be, for example, system start up time, process start up time, the Epoch, etc.
The origin in :CLOCK_REALTIME
is defined as the Epoch: 1970-01-01 00:00:00 UTC
; some systems count leap seconds and others don’t, so the result may vary across systems.
static VALUE rb_clock_gettime(int argc, VALUE *argv, VALUE _) { int ret; struct timetick tt; timetick_int_t numerators[2]; timetick_int_t denominators[2]; int num_numerators = 0; int num_denominators = 0; VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil; VALUE clk_id = argv[0]; #ifdef HAVE_CLOCK_GETTIME clockid_t c; #endif if (SYMBOL_P(clk_id)) { #ifdef CLOCK_REALTIME if (clk_id == RUBY_CLOCK_REALTIME) { c = CLOCK_REALTIME; goto gettime; } #endif #ifdef CLOCK_MONOTONIC if (clk_id == RUBY_CLOCK_MONOTONIC) { c = CLOCK_MONOTONIC; goto gettime; } #endif #ifdef CLOCK_PROCESS_CPUTIME_ID if (clk_id == RUBY_CLOCK_PROCESS_CPUTIME_ID) { c = CLOCK_PROCESS_CPUTIME_ID; goto gettime; } #endif #ifdef CLOCK_THREAD_CPUTIME_ID if (clk_id == RUBY_CLOCK_THREAD_CPUTIME_ID) { c = CLOCK_THREAD_CPUTIME_ID; goto gettime; } #endif /* * Non-clock_gettime clocks are provided by symbol clk_id. */ #ifdef HAVE_GETTIMEOFDAY /* * GETTIMEOFDAY_BASED_CLOCK_REALTIME is used for * CLOCK_REALTIME if clock_gettime is not available. */ #define RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME ID2SYM(id_GETTIMEOFDAY_BASED_CLOCK_REALTIME) if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) { struct timeval tv; ret = gettimeofday(&tv, 0); if (ret != 0) rb_sys_fail("gettimeofday"); tt.giga_count = tv.tv_sec; tt.count = (int32_t)tv.tv_usec * 1000; denominators[num_denominators++] = 1000000000; goto success; } #endif #define RUBY_TIME_BASED_CLOCK_REALTIME ID2SYM(id_TIME_BASED_CLOCK_REALTIME) if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) { time_t t; t = time(NULL); if (t == (time_t)-1) rb_sys_fail("time"); tt.giga_count = t; tt.count = 0; denominators[num_denominators++] = 1000000000; goto success; } #ifdef HAVE_TIMES #define RUBY_TIMES_BASED_CLOCK_MONOTONIC \ ID2SYM(id_TIMES_BASED_CLOCK_MONOTONIC) if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) { struct tms buf; clock_t c; unsigned_clock_t uc; c = times(&buf); if (c == (clock_t)-1) rb_sys_fail("times"); uc = (unsigned_clock_t)c; tt.count = (int32_t)(uc % 1000000000); tt.giga_count = (uc / 1000000000); denominators[num_denominators++] = get_clk_tck(); goto success; } #endif #ifdef RUSAGE_SELF #define RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID \ ID2SYM(id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) { struct rusage usage; int32_t usec; ret = getrusage(RUSAGE_SELF, &usage); if (ret != 0) rb_sys_fail("getrusage"); tt.giga_count = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec; usec = (int32_t)(usage.ru_utime.tv_usec + usage.ru_stime.tv_usec); if (1000000 <= usec) { tt.giga_count++; usec -= 1000000; } tt.count = usec * 1000; denominators[num_denominators++] = 1000000000; goto success; } #endif #ifdef HAVE_TIMES #define RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID \ ID2SYM(id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) { struct tms buf; unsigned_clock_t utime, stime; if (times(&buf) == (clock_t)-1) rb_sys_fail("times"); utime = (unsigned_clock_t)buf.tms_utime; stime = (unsigned_clock_t)buf.tms_stime; tt.count = (int32_t)((utime % 1000000000) + (stime % 1000000000)); tt.giga_count = (utime / 1000000000) + (stime / 1000000000); if (1000000000 <= tt.count) { tt.count -= 1000000000; tt.giga_count++; } denominators[num_denominators++] = get_clk_tck(); goto success; } #endif #define RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID \ ID2SYM(id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) { clock_t c; unsigned_clock_t uc; errno = 0; c = clock(); if (c == (clock_t)-1) rb_sys_fail("clock"); uc = (unsigned_clock_t)c; tt.count = (int32_t)(uc % 1000000000); tt.giga_count = uc / 1000000000; denominators[num_denominators++] = CLOCKS_PER_SEC; goto success; } #ifdef __APPLE__ if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) { const mach_timebase_info_data_t *info = get_mach_timebase_info(); uint64_t t = mach_absolute_time(); tt.count = (int32_t)(t % 1000000000); tt.giga_count = t / 1000000000; numerators[num_numerators++] = info->numer; denominators[num_denominators++] = info->denom; denominators[num_denominators++] = 1000000000; goto success; } #endif } else if (NUMERIC_CLOCKID) { #if defined(HAVE_CLOCK_GETTIME) struct timespec ts; c = NUM2CLOCKID(clk_id); gettime: ret = clock_gettime(c, &ts); if (ret == -1) clock_failed("gettime", errno, clk_id); tt.count = (int32_t)ts.tv_nsec; tt.giga_count = ts.tv_sec; denominators[num_denominators++] = 1000000000; goto success; #endif } else { rb_unexpected_type(clk_id, T_SYMBOL); } clock_failed("gettime", EINVAL, clk_id); success: return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit); }
Detaches the current process from its controlling terminal and runs it in the background as system daemon; returns zero.
By default:
-
Changes the current working directory to the root directory.
-
Redirects $stdin, $stdout, and $stderr to the null device.
If optional argument nochdir
is true
, does not change the current working directory.
If optional argument noclose
is true
, does not redirect $stdin, $stdout, or $stderr.
static VALUE proc_daemon(int argc, VALUE *argv, VALUE _) { int n, nochdir = FALSE, noclose = FALSE; switch (rb_check_arity(argc, 0, 2)) { case 2: noclose = TO_BOOL(argv[1], "noclose"); case 1: nochdir = TO_BOOL(argv[0], "nochdir"); } prefork(); n = rb_daemon(nochdir, noclose); if (n < 0) rb_sys_fail("daemon"); return INT2FIX(n); }
Avoids the potential for a child process to become a zombie process. Process.detach
prevents this by setting up a separate Ruby thread whose sole job is to reap the status of the process pid when it terminates.
This method is needed only when the parent process will never wait for the child process.
This example does not reap the second child process; that process appears as a zombie in the process status (ps
) output:
pid = Process.spawn('ruby', '-e', 'exit 13') # => 312691 sleep(1) # Find zombies. system("ps -ho pid,state -p #{pid}")
Output:
312716 Z
This example also does not reap the second child process, but it does detach the process so that it does not become a zombie:
pid = Process.spawn('ruby', '-e', 'exit 13') # => 313213 thread = Process.detach(pid) sleep(1) # => #<Process::Waiter:0x00007f038f48b838 run> system("ps -ho pid,state -p #{pid}") # Finds no zombies.
The waiting thread can return the pid of the detached child process:
thread.join.pid # => 313262
static VALUE proc_detach(VALUE obj, VALUE pid) { return rb_detach_process(NUM2PIDT(pid)); }
Returns the effective group ID for the current process:
Process.egid # => 500
Not available on all platforms.
static VALUE proc_getegid(VALUE obj) { rb_gid_t egid = getegid(); return GIDT2NUM(egid); }
Sets the effective group ID for the current process.
Not available on all platforms.
static VALUE proc_setegid(VALUE obj, VALUE egid) { #if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) rb_gid_t gid; #endif check_gid_switch(); #if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) gid = OBJ2GID(egid); #endif #if defined(HAVE_SETRESGID) if (setresgid(-1, gid, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETREGID if (setregid(-1, gid) < 0) rb_sys_fail(0); #elif defined HAVE_SETEGID if (setegid(gid) < 0) rb_sys_fail(0); #elif defined HAVE_SETGID if (gid == getgid()) { if (setgid(gid) < 0) rb_sys_fail(0); } else { rb_notimplement(); } #else rb_notimplement(); #endif return egid; }
Returns the effective user ID for the current process.
Process.euid # => 501
static VALUE proc_geteuid(VALUE obj) { rb_uid_t euid = geteuid(); return UIDT2NUM(euid); }
Sets the effective user ID for the current process.
Not available on all platforms.
static VALUE proc_seteuid_m(VALUE mod, VALUE euid) { check_uid_switch(); proc_seteuid(OBJ2UID(euid)); return euid; }
Replaces the current process by doing one of the following:
-
Passing string
command_line
to the shell. -
Invoking the executable at
exe_path
.
This method has potential security vulnerabilities if called with untrusted input; see Command Injection.
The new process is created using the exec system call; it may inherit some of its environment from the calling program (possibly including open file descriptors).
Argument env
, if given, is a hash that affects ENV
for the new process; see Execution Environment.
Argument options
is a hash of options for the new process; see Execution Options.
The first required argument is one of the following:
-
command_line
if it is a string, and if it begins with a shell reserved word or special built-in, or if it contains one or more metacharacters. -
exe_path
otherwise.
Argument command_line
String argument command_line
is a command line to be passed to a shell; it must begin with a shell reserved word, begin with a special built-in, or contain meta characters:
exec('echo') # Built-in. exec('if true; then echo "Foo"; fi') # Shell reserved word. exec('date > date.tmp') # Contains meta character.
The command line may also contain arguments and options for the command:
exec('echo "Foo"')
Output:
Foo
On a Unix-like system, the shell is /bin/sh
; otherwise the shell is determined by environment variable ENV['RUBYSHELL']
, if defined, or ENV['COMSPEC']
otherwise.
Except for the COMSPEC
case, the entire string command_line
is passed as an argument to shell option -c.
The shell performs normal shell expansion on the command line:
exec('echo C*')
Output:
CONTRIBUTING.md COPYING COPYING.ja
Raises an exception if the new process could not execute.
Argument exe_path
Argument exe_path
is one of the following:
-
The string path to an executable to be called.
-
A 2-element array containing the path to an executable and the string to be used as the name of the executing process.
Example:
exec('/usr/bin/date')
Output:
Sat Aug 26 09:38:00 AM CDT 2023
Ruby invokes the executable directly, with no shell and no shell expansion:
exec('doesnt_exist') # Raises Errno::ENOENT
If one or more args
is given, each is an argument or option to be passed to the executable:
exec('echo', 'C*') exec('echo', 'hello', 'world')
Output:
C* hello world
Raises an exception if the new process could not execute.
static VALUE f_exec(int c, const VALUE *a, VALUE _) { rb_f_exec(c, a); UNREACHABLE_RETURN(Qnil); }
Initiates termination of the Ruby script by raising SystemExit
; the exception may be caught. Returns exit status status
to the underlying operating system.
Values true
and false
for argument status
indicate, respectively, success and failure; The meanings of integer values are system-dependent.
Example:
begin exit puts 'Never get here.' rescue SystemExit puts 'Rescued a SystemExit exception.' end puts 'After begin block.'
Output:
Rescued a SystemExit exception. After begin block.
Just prior to final termination, Ruby executes any at-exit procedures (see Kernel::at_exit) and any object finalizers (see ObjectSpace::define_finalizer
).
Example:
at_exit { puts 'In at_exit function.' } ObjectSpace.define_finalizer('string', proc { puts 'In finalizer.' }) exit
Output:
In at_exit function. In finalizer.
static VALUE f_exit(int c, const VALUE *a, VALUE _) { rb_f_exit(c, a); UNREACHABLE_RETURN(Qnil); }
Exits the process immediately; no exit handlers are called. Returns exit status status
to the underlying operating system.
Process.exit!(true)
Values true
and false
for argument status
indicate, respectively, success and failure; The meanings of integer values are system-dependent.
static VALUE rb_f_exit_bang(int argc, VALUE *argv, VALUE obj) { int istatus; if (rb_check_arity(argc, 0, 1) == 1) { istatus = exit_status_code(argv[0]); } else { istatus = EXIT_FAILURE; } _exit(istatus); UNREACHABLE_RETURN(Qnil); }
Creates a child process.
With a block given, runs the block in the child process; on block exit, the child terminates with a status of zero:
puts "Before the fork: #{Process.pid}" fork do puts "In the child process: #{Process.pid}" end # => 382141 puts "After the fork: #{Process.pid}"
Output:
Before the fork: 420496 After the fork: 420496 In the child process: 420520
With no block given, the fork
call returns twice:
-
Once in the parent process, returning the pid of the child process.
-
Once in the child process, returning
nil
.
Example:
puts "This is the first line before the fork (pid #{Process.pid})" puts fork puts "This is the second line after the fork (pid #{Process.pid})"
Output:
This is the first line before the fork (pid 420199) 420223 This is the second line after the fork (pid 420199) This is the second line after the fork (pid 420223)
In either case, the child process may exit using Kernel.exit!
to avoid the call to Kernel#at_exit
.
To avoid zombie processes, the parent process should call either:
-
Process.wait
, to collect the termination statuses of its children. -
Process.detach
, to register disinterest in their status.
The thread calling fork
is the only thread in the created child process; fork
doesn’t copy other threads.
Note that method fork
is available on some platforms, but not on others:
Process.respond_to?(:fork) # => true # Would be false on some.
If not, you may use ::spawn
instead of fork
.
static VALUE rb_f_fork(VALUE obj) { rb_pid_t pid; pid = rb_call_proc__fork(); if (pid == 0) { if (rb_block_given_p()) { int status; rb_protect(rb_yield, Qundef, &status); ruby_stop(status); } return Qnil; } return PIDT2NUM(pid); }
Returns the process group ID for the given process ID +pid+: Process.getpgid(Process.ppid) # => 25527
Not available on all platforms.
static VALUE proc_getpgid(VALUE obj, VALUE pid) { rb_pid_t i; i = getpgid(NUM2PIDT(pid)); if (i < 0) rb_sys_fail(0); return PIDT2NUM(i); }
Returns the process group ID for the current process:
Process.getpgid(0) # => 25527 Process.getpgrp # => 25527
static VALUE proc_getpgrp(VALUE _) { rb_pid_t pgrp; #if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID) pgrp = getpgrp(); if (pgrp < 0) rb_sys_fail(0); return PIDT2NUM(pgrp); #else /* defined(HAVE_GETPGID) */ pgrp = getpgid(0); if (pgrp < 0) rb_sys_fail(0); return PIDT2NUM(pgrp); #endif }
Returns the scheduling priority for specified process, process group, or user.
Argument kind
is one of:
-
Process::PRIO_PROCESS
: return priority for process. -
Process::PRIO_PGRP
: return priority for process group. -
Process::PRIO_USER
: return priority for user.
Argument id
is the ID for the process, process group, or user; zero specified the current ID for kind
.
Examples:
Process.getpriority(Process::PRIO_USER, 0) # => 19 Process.getpriority(Process::PRIO_PROCESS, 0) # => 19
Not available on all platforms.
static VALUE proc_getpriority(VALUE obj, VALUE which, VALUE who) { int prio, iwhich, iwho; iwhich = NUM2INT(which); iwho = NUM2INT(who); errno = 0; prio = getpriority(iwhich, iwho); if (errno) rb_sys_fail(0); return INT2FIX(prio); }
Returns a 2-element array of the current (soft) limit and maximum (hard) limit for the given resource
.
Argument resource
specifies the resource whose limits are to be returned; see Process.setrlimit
.
Each of the returned values cur_limit
and max_limit
is an integer; see Process.setrlimit
.
Example:
Process.getrlimit(:CORE) # => [0, 18446744073709551615]
See Process.setrlimit
.
Not available on all platforms.
static VALUE proc_getrlimit(VALUE obj, VALUE resource) { struct rlimit rlim; if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) { rb_sys_fail("getrlimit"); } return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max)); }
Returns the session ID of the given process ID pid
, or of the current process if not given:
Process.getsid # => 27422 Process.getsid(0) # => 27422 Process.getsid(Process.pid()) # => 27422
Not available on all platforms.
static VALUE proc_getsid(int argc, VALUE *argv, VALUE _) { rb_pid_t sid; rb_pid_t pid = 0; if (rb_check_arity(argc, 0, 1) == 1 && !NIL_P(argv[0])) pid = NUM2PIDT(argv[0]); sid = getsid(pid); if (sid < 0) rb_sys_fail(0); return PIDT2NUM(sid); }
Returns the (real) group ID for the current process:
Process.gid # => 1000
static VALUE proc_getgid(VALUE obj) { rb_gid_t gid = getgid(); return GIDT2NUM(gid); }
Sets the group ID for the current process to new_gid
:
Process.gid = 1000 # => 1000
static VALUE proc_setgid(VALUE obj, VALUE id) { rb_gid_t gid; check_gid_switch(); gid = OBJ2GID(id); #if defined(HAVE_SETRESGID) if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETREGID if (setregid(gid, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETRGID if (setrgid(gid) < 0) rb_sys_fail(0); #elif defined HAVE_SETGID { if (getegid() == gid) { if (setgid(gid) < 0) rb_sys_fail(0); } else { rb_notimplement(); } } #endif return GIDT2NUM(gid); }
Returns an array of the group IDs in the supplemental group access list for the current process:
Process.groups # => [4, 24, 27, 30, 46, 122, 135, 136, 1000]
These properties of the returned array are system-dependent:
-
Whether (and how) the array is sorted.
-
Whether the array includes effective group IDs.
-
Whether the array includes duplicate group IDs.
-
Whether the array size exceeds the value of
Process.maxgroups
.
Use this call to get a sorted and unique array:
Process.groups.uniq.sort
static VALUE proc_getgroups(VALUE obj) { VALUE ary, tmp; int i, ngroups; rb_gid_t *groups; ngroups = getgroups(0, NULL); if (ngroups == -1) rb_sys_fail(0); groups = ALLOCV_N(rb_gid_t, tmp, ngroups); ngroups = getgroups(ngroups, groups); if (ngroups == -1) rb_sys_fail(0); ary = rb_ary_new(); for (i = 0; i < ngroups; i++) rb_ary_push(ary, GIDT2NUM(groups[i])); ALLOCV_END(tmp); return ary; }
Sets the supplemental group access list to the given array of group IDs.
Process.groups # => [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27] Process.groups = [27, 6, 10, 11] # => [27, 6, 10, 11] Process.groups # => [27, 6, 10, 11]
static VALUE proc_setgroups(VALUE obj, VALUE ary) { int ngroups, i; rb_gid_t *groups; VALUE tmp; PREPARE_GETGRNAM; Check_Type(ary, T_ARRAY); ngroups = RARRAY_LENINT(ary); if (ngroups > maxgroups()) rb_raise(rb_eArgError, "too many groups, %d max", maxgroups()); groups = ALLOCV_N(rb_gid_t, tmp, ngroups); for (i = 0; i < ngroups; i++) { VALUE g = RARRAY_AREF(ary, i); groups[i] = OBJ2GID1(g); } FINISH_GETGRNAM; if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */ rb_sys_fail(0); ALLOCV_END(tmp); return proc_getgroups(obj); }
Sets the supplemental group access list; the new list includes:
-
The group IDs of those groups to which the user given by
username
belongs. -
The group ID
gid
.
Example:
Process.groups # => [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27] Process.initgroups('me', 30) # => [30, 6, 10, 11] Process.groups # => [30, 6, 10, 11]
Not available on all platforms.
static VALUE proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp) { if (initgroups(StringValueCStr(uname), OBJ2GID(base_grp)) != 0) { rb_sys_fail(0); } return proc_getgroups(obj); }
Sends a signal to each process specified by ids
(which must specify at least one ID); returns the count of signals sent.
For each given id
, if id
is:
-
Positive, sends the signal to the process whose process ID is
id
. -
Zero, send the signal to all processes in the current process group.
-
Negative, sends the signal to a system-dependent collection of processes.
Argument signal
specifies the signal to be sent; the argument may be:
-
An integer signal number: e.g.,
-29
,0
,29
. -
A signal name (string), with or without leading
'SIG'
, and with or without a further prefixed minus sign ('-'
): e.g.:-
'SIGPOLL'
. -
'POLL'
, -
'-SIGPOLL'
. -
'-POLL'
.
-
-
A signal symbol, with or without leading
'SIG'
, and with or without a further prefixed minus sign ('-'
): e.g.:-
:SIGPOLL
. -
:POLL
. -
:'-SIGPOLL'
. -
:'-POLL'
.
-
If signal
is:
-
A non-negative integer, or a signal name or symbol without prefixed
'-'
, each process with process IDid
is signalled. -
A negative integer, or a signal name or symbol with prefixed
'-'
, each process group with group IDid
is signalled.
Use method Signal.list
to see which signals are supported by Ruby on the underlying platform; the method returns a hash of the string names and non-negative integer values of the supported signals. The size and content of the returned hash varies widely among platforms.
Additionally, signal 0
is useful to determine if the process exists.
Example:
pid = fork do Signal.trap('HUP') { puts 'Ouch!'; exit } # ... do some work ... end # ... Process.kill('HUP', pid) Process.wait
Output:
Ouch!
Exceptions:
-
Raises Errno::EINVAL or
RangeError
ifsignal
is an integer but invalid. -
Raises
ArgumentError
ifsignal
is a string or symbol but invalid. -
Raises Errno::ESRCH or
RangeError
if one ofids
is invalid. -
Raises Errno::EPERM if needed permissions are not in force.
In the last two cases, signals may have been sent to some processes.
static VALUE proc_rb_f_kill(int c, const VALUE *v, VALUE _) { return rb_f_kill(c, v); }
Returns a Process::Status
object representing the most recently exited child process in the current thread, or nil
if none:
Process.spawn('ruby', '-e', 'exit 13') Process.wait Process.last_status # => #<Process::Status: pid 14396 exit 13> Process.spawn('ruby', '-e', 'exit 14') Process.wait Process.last_status # => #<Process::Status: pid 4692 exit 14> Process.spawn('ruby', '-e', 'exit 15') # 'exit 15' has not been reaped by #wait. Process.last_status # => #<Process::Status: pid 4692 exit 14> Process.wait Process.last_status # => #<Process::Status: pid 1380 exit 15>
static VALUE proc_s_last_status(VALUE mod) { return rb_last_status_get(); }
Returns the maximum number of group IDs allowed in the supplemental group access list:
Process.maxgroups # => 32
static VALUE proc_getmaxgroups(VALUE obj) { return INT2FIX(maxgroups()); }
Sets the maximum number of group IDs allowed in the supplemental group access list.
static VALUE proc_setmaxgroups(VALUE obj, VALUE val) { int ngroups = FIX2INT(val); int ngroups_max = get_sc_ngroups_max(); if (ngroups <= 0) rb_raise(rb_eArgError, "maxgroups %d should be positive", ngroups); if (ngroups > RB_MAX_GROUPS) ngroups = RB_MAX_GROUPS; if (ngroups_max > 0 && ngroups > ngroups_max) ngroups = ngroups_max; _maxgroups = ngroups; return INT2FIX(_maxgroups); }
Returns the process ID of the current process:
Process.pid # => 15668
static VALUE proc_get_pid(VALUE _) { return get_pid(); }
Returns the process ID of the parent of the current process:
puts "Pid is #{Process.pid}." fork { puts "Parent pid is #{Process.ppid}." }
Output:
Pid is 271290. Parent pid is 271290
May not return a trustworthy value on certain platforms.
static VALUE proc_get_ppid(VALUE _) { return get_ppid(); }
Sets the process group ID for the process given by process ID pid
to pgid
.
Not available on all platforms.
static VALUE proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp) { rb_pid_t ipid, ipgrp; ipid = NUM2PIDT(pid); ipgrp = NUM2PIDT(pgrp); if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0); return INT2FIX(0); }
Equivalent to setpgid(0, 0)
.
Not available on all platforms.
static VALUE proc_setpgrp(VALUE _) { /* check for posix setpgid() first; this matches the posix */ /* getpgrp() above. It appears that configure will set SETPGRP_VOID */ /* even though setpgrp(0,0) would be preferred. The posix call avoids */ /* this confusion. */ #ifdef HAVE_SETPGID if (setpgid(0,0) < 0) rb_sys_fail(0); #elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID) if (setpgrp() < 0) rb_sys_fail(0); #endif return INT2FIX(0); }
See Process.getpriority
.
Examples:
Process.setpriority(Process::PRIO_USER, 0, 19) # => 0 Process.setpriority(Process::PRIO_PROCESS, 0, 19) # => 0 Process.getpriority(Process::PRIO_USER, 0) # => 19 Process.getpriority(Process::PRIO_PROCESS, 0) # => 19
Not available on all platforms.
static VALUE proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio) { int iwhich, iwho, iprio; iwhich = NUM2INT(which); iwho = NUM2INT(who); iprio = NUM2INT(prio); if (setpriority(iwhich, iwho, iprio) < 0) rb_sys_fail(0); return INT2FIX(0); }
Sets the process title that appears on the ps(1) command. Not necessarily effective on all platforms. No exception will be raised regardless of the result, nor will NotImplementedError
be raised even if the platform does not support the feature.
Calling this method does not affect the value of $0.
Process.setproctitle('myapp: worker #%d' % worker_id)
This method first appeared in Ruby 2.1 to serve as a global variable free means to change the process title.
static VALUE proc_setproctitle(VALUE process, VALUE title) { return ruby_setproctitle(title); }
Sets limits for the current process for the given resource
to cur_limit
(soft limit) and max_limit
(hard limit); returns nil
.
Argument resource
specifies the resource whose limits are to be set; the argument may be given as a symbol, as a string, or as a constant beginning with Process::RLIMIT_
(e.g., :CORE
, 'CORE'
, or Process::RLIMIT_CORE
.
The resources available and supported are system-dependent, and may include (here expressed as symbols):
-
:AS
: Total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD except 4.4BSD-Lite). -
:CORE
: Core size (bytes) (SUSv3). -
:CPU
: CPU time (seconds) (SUSv3). -
:DATA
:Data
segment (bytes) (SUSv3). -
:FSIZE
:File
size (bytes) (SUSv3). -
:MEMLOCK
: Total size for mlock(2) (bytes) (4.4BSD, GNU/Linux). -
:MSGQUEUE
: Allocation for POSIX message queues (bytes) (GNU/Linux). -
:NICE
: Ceiling on process’s nice(2) value (number) (GNU/Linux). -
:NOFILE
:File
descriptors (number) (SUSv3). -
:NPROC
: Number of processes for the user (number) (4.4BSD, GNU/Linux). -
:NPTS
: Number of pseudo terminals (number) (FreeBSD). -
:RSS
: Resident memory size (bytes) (4.2BSD, GNU/Linux). -
:RTPRIO
: Ceiling on the process’s real-time priority (number) (GNU/Linux). -
:RTTIME
: CPU time for real-time process (us) (GNU/Linux). -
:SBSIZE
: All socket buffers (bytes) (NetBSD, FreeBSD). -
:SIGPENDING
: Number of queued signals allowed (signals) (GNU/Linux). -
:STACK
: Stack size (bytes) (SUSv3).
Arguments cur_limit
and max_limit
may be:
-
Integers (
max_limit
should not be smaller thancur_limit
). -
Symbol
:SAVED_MAX
, string'SAVED_MAX'
, or constantProcess::RLIM_SAVED_MAX
: saved maximum limit. -
Symbol
:SAVED_CUR
, string'SAVED_CUR'
, or constantProcess::RLIM_SAVED_CUR
: saved current limit. -
Symbol
:INFINITY
, string'INFINITY'
, or constantProcess::RLIM_INFINITY
: no limit on resource.
This example raises the soft limit of core size to the hard limit to try to make core dump possible:
Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])
Not available on all platforms.
static VALUE proc_setrlimit(int argc, VALUE *argv, VALUE obj) { VALUE resource, rlim_cur, rlim_max; struct rlimit rlim; rb_check_arity(argc, 2, 3); resource = argv[0]; rlim_cur = argv[1]; if (argc < 3 || NIL_P(rlim_max = argv[2])) rlim_max = rlim_cur; rlim.rlim_cur = rlimit_resource_value(rlim_cur); rlim.rlim_max = rlimit_resource_value(rlim_max); if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) { rb_sys_fail("setrlimit"); } return Qnil; }
Establishes the current process as a new session and process group leader, with no controlling tty; returns the session ID:
Process.setsid # => 27422
Not available on all platforms.
static VALUE proc_setsid(VALUE _) { rb_pid_t pid; pid = setsid(); if (pid < 0) rb_sys_fail(0); return PIDT2NUM(pid); }
Creates a new child process by doing one of the following in that process:
-
Passing string
command_line
to the shell. -
Invoking the executable at
exe_path
.
This method has potential security vulnerabilities if called with untrusted input; see Command Injection.
Returns the process ID (pid) of the new process, without waiting for it to complete.
To avoid zombie processes, the parent process should call either:
-
Process.wait
, to collect the termination statuses of its children. -
Process.detach
, to register disinterest in their status.
The new process is created using the exec system call; it may inherit some of its environment from the calling program (possibly including open file descriptors).
Argument env
, if given, is a hash that affects ENV
for the new process; see Execution Environment.
Argument options
is a hash of options for the new process; see Execution Options.
The first required argument is one of the following:
-
command_line
if it is a string, and if it begins with a shell reserved word or special built-in, or if it contains one or more metacharacters. -
exe_path
otherwise.
Argument command_line
String argument command_line
is a command line to be passed to a shell; it must begin with a shell reserved word, begin with a special built-in, or contain meta characters:
spawn('echo') # => 798847 Process.wait # => 798847 spawn('if true; then echo "Foo"; fi') # => 798848 Process.wait # => 798848 spawn('date > /tmp/date.tmp') # => 798879 Process.wait # => 798849 spawn('date > /nop/date.tmp') # => 798882 # Issues error message. Process.wait # => 798882
The command line may also contain arguments and options for the command:
spawn('echo "Foo"') # => 799031 Process.wait # => 799031
Output:
Foo
On a Unix-like system, the shell is /bin/sh
; otherwise the shell is determined by environment variable ENV['RUBYSHELL']
, if defined, or ENV['COMSPEC']
otherwise.
Except for the COMSPEC
case, the entire string command_line
is passed as an argument to shell option -c.
The shell performs normal shell expansion on the command line:
spawn('echo C*') # => 799139 Process.wait # => 799139
Output:
CONTRIBUTING.md COPYING COPYING.ja
Raises an exception if the new process could not execute.
Argument exe_path
Argument exe_path
is one of the following:
-
The string path to an executable to be called.
-
A 2-element array containing the path to an executable and the string to be used as the name of the executing process.
Example:
spawn('/usr/bin/date') # => 799198 # Path to date on Unix-style system. Process.wait # => 799198
Output:
Thu Aug 31 10:06:48 AM CDT 2023
Ruby invokes the executable directly, with no shell and no shell expansion.
If one or more args
is given, each is an argument or option to be passed to the executable:
spawn('echo', 'C*') # => 799392 Process.wait # => 799392 spawn('echo', 'hello', 'world') # => 799393 Process.wait # => 799393
Output:
C* hello world
Raises an exception if the new process could not execute.
static VALUE rb_f_spawn(int argc, VALUE *argv, VALUE _) { rb_pid_t pid; char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' }; VALUE execarg_obj, fail_str; struct rb_execarg *eargp; execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE); eargp = rb_execarg_get(execarg_obj); fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name; pid = rb_execarg_spawn(execarg_obj, errmsg, sizeof(errmsg)); if (pid == -1) { int err = errno; rb_exec_fail(eargp, err, errmsg); RB_GC_GUARD(execarg_obj); rb_syserr_fail_str(err, fail_str); } #if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV) return PIDT2NUM(pid); #else return Qnil; #endif }
Returns a Process::Tms structure that contains user and system CPU times for the current process, and for its children processes:
Process.times # => #<struct Process::Tms utime=55.122118, stime=35.533068, cutime=0.0, cstime=0.002846>
VALUE rb_proc_times(VALUE obj) { VALUE utime, stime, cutime, cstime, ret; #if defined(RUSAGE_SELF) && defined(RUSAGE_CHILDREN) struct rusage usage_s, usage_c; if (getrusage(RUSAGE_SELF, &usage_s) != 0 || getrusage(RUSAGE_CHILDREN, &usage_c) != 0) rb_sys_fail("getrusage"); utime = DBL2NUM((double)usage_s.ru_utime.tv_sec + (double)usage_s.ru_utime.tv_usec/1e6); stime = DBL2NUM((double)usage_s.ru_stime.tv_sec + (double)usage_s.ru_stime.tv_usec/1e6); cutime = DBL2NUM((double)usage_c.ru_utime.tv_sec + (double)usage_c.ru_utime.tv_usec/1e6); cstime = DBL2NUM((double)usage_c.ru_stime.tv_sec + (double)usage_c.ru_stime.tv_usec/1e6); #else const double hertz = (double)get_clk_tck(); struct tms buf; times(&buf); utime = DBL2NUM(buf.tms_utime / hertz); stime = DBL2NUM(buf.tms_stime / hertz); cutime = DBL2NUM(buf.tms_cutime / hertz); cstime = DBL2NUM(buf.tms_cstime / hertz); #endif ret = rb_struct_new(rb_cProcessTms, utime, stime, cutime, cstime); RB_GC_GUARD(utime); RB_GC_GUARD(stime); RB_GC_GUARD(cutime); RB_GC_GUARD(cstime); return ret; }
Returns the (real) user ID of the current process.
Process.uid # => 1000
static VALUE proc_getuid(VALUE obj) { rb_uid_t uid = getuid(); return UIDT2NUM(uid); }
Sets the (user) user ID for the current process to new_uid
:
Process.uid = 1000 # => 1000
Not available on all platforms.
static VALUE proc_setuid(VALUE obj, VALUE id) { rb_uid_t uid; check_uid_switch(); uid = OBJ2UID(id); #if defined(HAVE_SETRESUID) if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETREUID if (setreuid(uid, -1) < 0) rb_sys_fail(0); #elif defined HAVE_SETRUID if (setruid(uid) < 0) rb_sys_fail(0); #elif defined HAVE_SETUID { if (geteuid() == uid) { if (setuid(uid) < 0) rb_sys_fail(0); } else { rb_notimplement(); } } #endif return id; }
Waits for a suitable child process to exit, returns its process ID, and sets $?
to a Process::Status
object containing information on that process. Which child it waits for depends on the value of the given pid
:
-
Positive integer: Waits for the child process whose process ID is
pid
:pid0 = Process.spawn('ruby', '-e', 'exit 13') # => 230866 pid1 = Process.spawn('ruby', '-e', 'exit 14') # => 230891 Process.wait(pid0) # => 230866 $? # => #<Process::Status: pid 230866 exit 13> Process.wait(pid1) # => 230891 $? # => #<Process::Status: pid 230891 exit 14> Process.wait(pid0) # Raises Errno::ECHILD
-
0
: Waits for any child process whose group ID is the same as that of the current process:parent_pgpid = Process.getpgid(Process.pid) puts "Parent process group ID is #{parent_pgpid}." child0_pid = fork do puts "Child 0 pid is #{Process.pid}" child0_pgid = Process.getpgid(Process.pid) puts "Child 0 process group ID is #{child0_pgid} (same as parent's)." end child1_pid = fork do puts "Child 1 pid is #{Process.pid}" Process.setpgid(0, Process.pid) child1_pgid = Process.getpgid(Process.pid) puts "Child 1 process group ID is #{child1_pgid} (different from parent's)." end retrieved_pid = Process.wait(0) puts "Process.wait(0) returned pid #{retrieved_pid}, which is child 0 pid." begin Process.wait(0) rescue Errno::ECHILD => x puts "Raised #{x.class}, because child 1 process group ID differs from parent process group ID." end
Output:
Parent process group ID is 225764. Child 0 pid is 225788 Child 0 process group ID is 225764 (same as parent's). Child 1 pid is 225789 Child 1 process group ID is 225789 (different from parent's). Process.wait(0) returned pid 225788, which is child 0 pid. Raised Errno::ECHILD, because child 1 process group ID differs from parent process group ID.
-
-1
(default): Waits for any child process:parent_pgpid = Process.getpgid(Process.pid) puts "Parent process group ID is #{parent_pgpid}." child0_pid = fork do puts "Child 0 pid is #{Process.pid}" child0_pgid = Process.getpgid(Process.pid) puts "Child 0 process group ID is #{child0_pgid} (same as parent's)." end child1_pid = fork do puts "Child 1 pid is #{Process.pid}" Process.setpgid(0, Process.pid) child1_pgid = Process.getpgid(Process.pid) puts "Child 1 process group ID is #{child1_pgid} (different from parent's)." sleep 3 # To force child 1 to exit later than child 0 exit. end child_pids = [child0_pid, child1_pid] retrieved_pid = Process.wait(-1) puts child_pids.include?(retrieved_pid) retrieved_pid = Process.wait(-1) puts child_pids.include?(retrieved_pid)
Output:
Parent process group ID is 228736. Child 0 pid is 228758 Child 0 process group ID is 228736 (same as parent's). Child 1 pid is 228759 Child 1 process group ID is 228759 (different from parent's). true true
-
Less than
-1
: Waits for any child whose process group ID is-pid
:parent_pgpid = Process.getpgid(Process.pid) puts "Parent process group ID is #{parent_pgpid}." child0_pid = fork do puts "Child 0 pid is #{Process.pid}" child0_pgid = Process.getpgid(Process.pid) puts "Child 0 process group ID is #{child0_pgid} (same as parent's)." end child1_pid = fork do puts "Child 1 pid is #{Process.pid}" Process.setpgid(0, Process.pid) child1_pgid = Process.getpgid(Process.pid) puts "Child 1 process group ID is #{child1_pgid} (different from parent's)." end sleep 1 retrieved_pid = Process.wait(-child1_pid) puts "Process.wait(-child1_pid) returned pid #{retrieved_pid}, which is child 1 pid." begin Process.wait(-child1_pid) rescue Errno::ECHILD => x puts "Raised #{x.class}, because there's no longer a child with process group id #{child1_pid}." end
Output:
Parent process group ID is 230083. Child 0 pid is 230108 Child 0 process group ID is 230083 (same as parent's). Child 1 pid is 230109 Child 1 process group ID is 230109 (different from parent's). Process.wait(-child1_pid) returned pid 230109, which is child 1 pid. Raised Errno::ECHILD, because there's no longer a child with process group id 230109.
Argument flags
should be given as one of the following constants, or as the logical OR of both:
-
Process::WNOHANG
: Does not block if no child process is available. -
Process:WUNTRACED: May return a stopped child process, even if not yet reported.
Not all flags are available on all platforms.
Raises Errno::ECHILD if there is no suitable child process.
Not available on all platforms.
Process.waitpid
is an alias for Process.wait
.
static VALUE proc_m_wait(int c, VALUE *v, VALUE _) { return proc_wait(c, v); }
Like Process.waitpid
, but returns an array containing the child process pid
and Process::Status
status
:
pid = Process.spawn('ruby', '-e', 'exit 13') # => 309581 Process.wait2(pid) # => [309581, #<Process::Status: pid 309581 exit 13>]
Process.waitpid2
is an alias for Process.waitpid
.
static VALUE proc_wait2(int argc, VALUE *argv, VALUE _) { VALUE pid = proc_wait(argc, argv); if (NIL_P(pid)) return Qnil; return rb_assoc_new(pid, rb_last_status_get()); }
Waits for all children, returns an array of 2-element arrays; each subarray contains the integer pid and Process::Status
status for one of the reaped child processes:
pid0 = Process.spawn('ruby', '-e', 'exit 13') # => 325470 pid1 = Process.spawn('ruby', '-e', 'exit 14') # => 325495 Process.waitall # => [[325470, #<Process::Status: pid 325470 exit 13>], [325495, #<Process::Status: pid 325495 exit 14>]]
static VALUE proc_waitall(VALUE _) { VALUE result; rb_pid_t pid; int status; result = rb_ary_new(); rb_last_status_clear(); for (pid = -1;;) { pid = rb_waitpid(-1, &status, 0); if (pid == -1) { int e = errno; if (e == ECHILD) break; rb_syserr_fail(e, 0); } rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get())); } return result; }
Waits for a suitable child process to exit, returns its process ID, and sets $?
to a Process::Status
object containing information on that process. Which child it waits for depends on the value of the given pid
:
-
Positive integer: Waits for the child process whose process ID is
pid
:pid0 = Process.spawn('ruby', '-e', 'exit 13') # => 230866 pid1 = Process.spawn('ruby', '-e', 'exit 14') # => 230891 Process.wait(pid0) # => 230866 $? # => #<Process::Status: pid 230866 exit 13> Process.wait(pid1) # => 230891 $? # => #<Process::Status: pid 230891 exit 14> Process.wait(pid0) # Raises Errno::ECHILD
-
0
: Waits for any child process whose group ID is the same as that of the current process:parent_pgpid = Process.getpgid(Process.pid) puts "Parent process group ID is #{parent_pgpid}." child0_pid = fork do puts "Child 0 pid is #{Process.pid}" child0_pgid = Process.getpgid(Process.pid) puts "Child 0 process group ID is #{child0_pgid} (same as parent's)." end child1_pid = fork do puts "Child 1 pid is #{Process.pid}" Process.setpgid(0, Process.pid) child1_pgid = Process.getpgid(Process.pid) puts "Child 1 process group ID is #{child1_pgid} (different from parent's)." end retrieved_pid = Process.wait(0) puts "Process.wait(0) returned pid #{retrieved_pid}, which is child 0 pid." begin Process.wait(0) rescue Errno::ECHILD => x puts "Raised #{x.class}, because child 1 process group ID differs from parent process group ID." end
Output:
Parent process group ID is 225764. Child 0 pid is 225788 Child 0 process group ID is 225764 (same as parent's). Child 1 pid is 225789 Child 1 process group ID is 225789 (different from parent's). Process.wait(0) returned pid 225788, which is child 0 pid. Raised Errno::ECHILD, because child 1 process group ID differs from parent process group ID.
-
-1
(default): Waits for any child process:parent_pgpid = Process.getpgid(Process.pid) puts "Parent process group ID is #{parent_pgpid}." child0_pid = fork do puts "Child 0 pid is #{Process.pid}" child0_pgid = Process.getpgid(Process.pid) puts "Child 0 process group ID is #{child0_pgid} (same as parent's)." end child1_pid = fork do puts "Child 1 pid is #{Process.pid}" Process.setpgid(0, Process.pid) child1_pgid = Process.getpgid(Process.pid) puts "Child 1 process group ID is #{child1_pgid} (different from parent's)." sleep 3 # To force child 1 to exit later than child 0 exit. end child_pids = [child0_pid, child1_pid] retrieved_pid = Process.wait(-1) puts child_pids.include?(retrieved_pid) retrieved_pid = Process.wait(-1) puts child_pids.include?(retrieved_pid)
Output:
Parent process group ID is 228736. Child 0 pid is 228758 Child 0 process group ID is 228736 (same as parent's). Child 1 pid is 228759 Child 1 process group ID is 228759 (different from parent's). true true
-
Less than
-1
: Waits for any child whose process group ID is-pid
:parent_pgpid = Process.getpgid(Process.pid) puts "Parent process group ID is #{parent_pgpid}." child0_pid = fork do puts "Child 0 pid is #{Process.pid}" child0_pgid = Process.getpgid(Process.pid) puts "Child 0 process group ID is #{child0_pgid} (same as parent's)." end child1_pid = fork do puts "Child 1 pid is #{Process.pid}" Process.setpgid(0, Process.pid) child1_pgid = Process.getpgid(Process.pid) puts "Child 1 process group ID is #{child1_pgid} (different from parent's)." end sleep 1 retrieved_pid = Process.wait(-child1_pid) puts "Process.wait(-child1_pid) returned pid #{retrieved_pid}, which is child 1 pid." begin Process.wait(-child1_pid) rescue Errno::ECHILD => x puts "Raised #{x.class}, because there's no longer a child with process group id #{child1_pid}." end
Output:
Parent process group ID is 230083. Child 0 pid is 230108 Child 0 process group ID is 230083 (same as parent's). Child 1 pid is 230109 Child 1 process group ID is 230109 (different from parent's). Process.wait(-child1_pid) returned pid 230109, which is child 1 pid. Raised Errno::ECHILD, because there's no longer a child with process group id 230109.
Argument flags
should be given as one of the following constants, or as the logical OR of both:
-
Process::WNOHANG
: Does not block if no child process is available. -
Process:WUNTRACED: May return a stopped child process, even if not yet reported.
Not all flags are available on all platforms.
Raises Errno::ECHILD if there is no suitable child process.
Not available on all platforms.
Process.waitpid
is an alias for Process.wait
.
static VALUE proc_m_wait(int c, VALUE *v, VALUE _) { return proc_wait(c, v); }
Like Process.waitpid
, but returns an array containing the child process pid
and Process::Status
status
:
pid = Process.spawn('ruby', '-e', 'exit 13') # => 309581 Process.wait2(pid) # => [309581, #<Process::Status: pid 309581 exit 13>]
Process.waitpid2
is an alias for Process.waitpid
.
static VALUE proc_wait2(int argc, VALUE *argv, VALUE _) { VALUE pid = proc_wait(argc, argv); if (NIL_P(pid)) return Qnil; return rb_assoc_new(pid, rb_last_status_get()); }
Notify the Ruby virtual machine that the boot sequence is finished, and that now is a good time to optimize the application. This is useful for long running applications.
This method is expected to be called at the end of the application boot. If the application is deployed using a pre-forking model, Process.warmup
should be called in the original process before the first fork.
The actual optimizations performed are entirely implementation specific and may change in the future without notice.
On CRuby, Process.warmup
:
-
Performs a major
GC
. -
Compacts the heap.
-
Promotes all surviving objects to the old generation.
-
Precomputes the coderange of all strings.
-
Frees all empty heap pages and increments the allocatable pages counter by the number of pages freed.
static VALUE proc_warmup(VALUE _) { RB_VM_LOCK_ENTER(); rb_gc_prepare_heap(); RB_VM_LOCK_LEAVE(); return Qtrue; }