Returns arg as an Array
. First tries to call
arg.to_ary
, then arg.to_a
. If
both fail, creates a single element array containing arg (unless
arg is nil
).
Array(1..5) #=> [1, 2, 3, 4, 5]
static VALUE rb_f_array(obj, arg) VALUE obj, arg; { return rb_Array(arg); }
Returns arg converted to a float. Numeric types are converted directly, the rest are
converted using arg.to_f. As of Ruby 1.8, converting
nil
generates a TypeError
.
Float(1) #=> 1.0 Float("123.456") #=> 123.456
static VALUE rb_f_float(obj, arg) VALUE obj, arg; { return rb_Float(arg); }
Converts arg to a Fixnum
or Bignum
. Numeric types are converted directly (with floating
point numbers being truncated). If arg is a String
,
leading radix indicators (0
, 0b
, and
0x
) are honored. Others are converted using
to_int
and to_i
. This behavior is different from
that of String#to_i
.
Integer(123.999) #=> 123 Integer("0x1a") #=> 26 Integer(Time.new) #=> 1049896590
static VALUE rb_f_integer(obj, arg) VALUE obj, arg; { return rb_Integer(arg); }
Converts arg to a String
by calling its
to_s
method.
String(self) #=> "main" String(self.class #=> "Object" String(123456) #=> "123456"
static VALUE rb_f_string(obj, arg) VALUE obj, arg; { return rb_String(arg); }
Returns the standard output of running cmd in a subshell. The
built-in syntax %x{...}
uses this method. Sets $?
to the process status.
`date` #=> "Wed Apr 9 08:56:30 CDT 2003\n" `ls testdir`.split[1] #=> "main.rb" `echo oops && exit 99` #=> "oops\n" $?.exitstatus #=> 99
static VALUE rb_f_backquote(obj, str) VALUE obj, str; { volatile VALUE port; VALUE result; OpenFile *fptr; SafeStringValue(str); port = pipe_open(str, 0, "r"); if (NIL_P(port)) return rb_str_new(0,0); GetOpenFile(port, fptr); result = read_all(fptr, remain_size(fptr), Qnil); rb_io_close(port); return result; }
Terminate execution immediately, effectively by calling
Kernel.exit(1)
. If msg is given, it is written to
STDERR prior to terminating.
VALUE rb_f_abort(argc, argv) int argc; VALUE *argv; { rb_secure(4); if (argc == 0) { if (!NIL_P(ruby_errinfo)) { error_print(); } rb_exit(EXIT_FAILURE); } else { VALUE mesg; rb_scan_args(argc, argv, "1", &mesg); StringValue(mesg); rb_io_puts(1, &mesg, rb_stderr); terminate_process(EXIT_FAILURE, mesg); } return Qnil; /* not reached */ }
Converts block to a Proc
object (and therefore binds
it at the point of call) and registers it for execution when the program
exits. If multiple handlers are registered, they are executed in reverse
order of registration.
def do_at_exit(str1) at_exit { print str1 } end at_exit { puts "cruel world" } do_at_exit("goodbye ") exit
produces:
goodbye cruel world
static VALUE rb_f_at_exit() { VALUE proc; if (!rb_block_given_p()) { rb_raise(rb_eArgError, "called without a block"); } proc = rb_block_proc(); rb_set_end_proc(call_end_proc, proc); return proc; }
Registers filename to be loaded (using
Kernel::require
) the first time that module (which
may be a String
or a symbol) is accessed.
autoload(:MyModule, "/usr/local/lib/modules/my_module.rb")
static VALUE rb_f_autoload(obj, sym, file) VALUE obj; VALUE sym; VALUE file; { if (NIL_P(ruby_cbase)) { rb_raise(rb_eTypeError, "no class/module for autoload target"); } return rb_mod_autoload(ruby_cbase, sym, file); }
Registers filename to be loaded (using
Kernel::require
) the first time that module (which
may be a String
or a symbol) is accessed.
autoload(:MyModule, "/usr/local/lib/modules/my_module.rb")
static VALUE rb_f_autoload_p(obj, sym) VALUE obj; VALUE sym; { /* use ruby_cbase as same as rb_f_autoload. */ if (NIL_P(ruby_cbase)) { return Qfalse; } return rb_mod_autoload_p(ruby_cbase, sym); }
Returns a Binding
object, describing the variable and method
bindings at the point of call. This object can be used when calling
eval
to execute the evaluated command in this environment.
Also see the description of class Binding
.
def getBinding(param) return binding end b = getBinding("hello") eval("param", b) #=> "hello"
static VALUE rb_f_binding(self) VALUE self; { struct BLOCK *data, *p; struct RVarmap *vars; VALUE bind; PUSH_BLOCK(0,0); bind = Data_Make_Struct(rb_cBinding,struct BLOCK,blk_mark,blk_free,data); *data = *ruby_block; data->orig_thread = rb_thread_current(); data->wrapper = ruby_wrapper; data->iter = rb_f_block_given_p(); frame_dup(&data->frame); if (ruby_frame->prev) { data->frame.last_func = ruby_frame->prev->last_func; data->frame.last_class = ruby_frame->prev->last_class; data->frame.orig_func = ruby_frame->prev->orig_func; } if (data->iter) { blk_copy_prev(data); } else { data->prev = 0; } for (p = data; p; p = p->prev) { for (vars = p->dyna_vars; vars; vars = vars->next) { if (FL_TEST(vars, DVAR_DONT_RECYCLE)) break; FL_SET(vars, DVAR_DONT_RECYCLE); } } scope_dup(data->scope); POP_BLOCK(); return bind; }
Returns true
if yield
would execute a block in
the current context. The iterator?
form is mildly deprecated.
def try if block_given? yield else "no block" end end try #=> "no block" try { "hello" } #=> "hello" try do "hello" end #=> "hello"
static VALUE rb_f_block_given_p() { if (ruby_frame->prev && ruby_frame->prev->iter == ITER_CUR && ruby_block) return Qtrue; return Qfalse; }
Generates a Continuation
object, which it passes to the
associated block. Performing a cont.call
will cause
the callcc
to return (as will falling through the end of the
block). The value returned by the callcc
is the value of the
block, or the value passed to cont.call
. See class
Continuation
for more details. Also see
Kernel::throw
for an alternative mechanism for unwinding a
call stack.
static VALUE rb_callcc(self) VALUE self; { volatile VALUE cont; rb_thread_t th; volatile rb_thread_t th_save; struct tag *tag; struct RVarmap *vars; THREAD_ALLOC(th); /* must finish th initialization before any possible gc. * brent@mbari.org */ th->thread = curr_thread->thread; th->thgroup = cont_protect; cont = Data_Wrap_Struct(rb_cCont, cc_mark, thread_free, th); scope_dup(ruby_scope); for (tag=prot_tag; tag; tag=tag->prev) { scope_dup(tag->scope); } for (vars = ruby_dyna_vars; vars; vars = vars->next) { if (FL_TEST(vars, DVAR_DONT_RECYCLE)) break; FL_SET(vars, DVAR_DONT_RECYCLE); } th_save = th; if (THREAD_SAVE_CONTEXT(th)) { return th_save->result; } else { return rb_yield(cont); } }
Returns the current execution stack—an array containing strings in the form “file:line'' or “file:line: in `method'''. The optional start parameter determines the number of initial stack entries to omit from the result.
def a(skip) caller(skip) end def b(skip) a(skip) end def c(skip) b(skip) end c(0) #=> ["prog:2:in `a'", "prog:5:in `b'", "prog:8:in `c'", "prog:10"] c(1) #=> ["prog:5:in `b'", "prog:8:in `c'", "prog:11"] c(2) #=> ["prog:8:in `c'", "prog:12"] c(3) #=> ["prog:13"]
static VALUE rb_f_caller(argc, argv) int argc; VALUE *argv; { VALUE level; int lev; rb_scan_args(argc, argv, "01", &level); if (NIL_P(level)) lev = 1; else lev = NUM2INT(level); if (lev < 0) rb_raise(rb_eArgError, "negative level (%d)", lev); return backtrace(lev); }
catch
executes its block. If a throw
is executed,
Ruby searches up its stack for a catch
block with a tag
corresponding to the throw
's symbol. If found,
that block is terminated, and catch
returns the value given to
throw
. If throw
is not called, the block
terminates normally, and the value of catch
is the value of
the last expression evaluated. catch
expressions may be
nested, and the throw
call need not be in lexical scope.
def routine(n) puts n throw :done if n <= 0 routine(n-1) end catch(:done) { routine(3) }
produces:
3 2 1 0
static VALUE rb_f_catch(dmy, tag) VALUE dmy, tag; { int state; VALUE val = Qnil; /* OK */ tag = ID2SYM(rb_to_id(tag)); PUSH_TAG(tag); if ((state = EXEC_TAG()) == 0) { val = rb_yield_0(tag, 0, 0, 0, Qfalse); } else if (state == TAG_THROW && tag == prot_tag->dst) { val = prot_tag->retval; state = 0; } POP_TAG(); if (state) JUMP_TAG(state); return val; }
Equivalent to $_ = $_.chomp(string)
. See
String#chomp
.
$_ = "now\n" chomp #=> "now" $_ #=> "now" chomp "ow" #=> "n" $_ #=> "n" chomp "xxx" #=> "n" $_ #=> "n"
static VALUE rb_f_chomp(argc, argv) int argc; VALUE *argv; { VALUE str = uscore_get(); VALUE dup = rb_str_dup(str); if (NIL_P(rb_str_chomp_bang(argc, argv, dup))) return str; rb_lastline_set(dup); return dup; }
Equivalent to $_.chomp!(string)
. See
String#chomp!
$_ = "now\n" chomp! #=> "now" $_ #=> "now" chomp! "x" #=> nil $_ #=> "now"
static VALUE rb_f_chomp_bang(argc, argv) int argc; VALUE *argv; { return rb_str_chomp_bang(argc, argv, uscore_get()); }
Equivalent to ($_.dup).chop!
, except nil
is never
returned. See String#chop!
.
a = "now\r\n" $_ = a chop #=> "now" $_ #=> "now" chop #=> "no" chop #=> "n" chop #=> "" chop #=> "" a #=> "now\r\n"
static VALUE rb_f_chop() { VALUE str = uscore_get(); if (RSTRING(str)->len > 0) { str = rb_str_dup(str); rb_str_chop_bang(str); rb_lastline_set(str); } return str; }
Equivalent to $_.chop!
.
a = "now\r\n" $_ = a chop! #=> "now" chop! #=> "no" chop! #=> "n" chop! #=> "" chop! #=> nil $_ #=> "" a #=> ""
static VALUE rb_f_chop_bang(str) VALUE str; { return rb_str_chop_bang(uscore_get()); }
Evaluates the Ruby expression(s) in string. If binding is
given, the evaluation is performed in its context. The binding may be a
Binding
object or a Proc
object. If the optional
filename and lineno parameters are present, they will be
used when reporting syntax errors.
def getBinding(str) return binding end str = "hello" eval "str + ' Fred'" #=> "hello Fred" eval "str + ' Fred'", getBinding("bye") #=> "bye Fred"
static VALUE rb_f_eval(argc, argv, self) int argc; VALUE *argv; VALUE self; { VALUE src, scope, vfile, vline; char *file = "(eval)"; int line = 1; rb_scan_args(argc, argv, "13", &src, &scope, &vfile, &vline); if (ruby_safe_level >= 4) { StringValue(src); if (!NIL_P(scope) && !OBJ_TAINTED(scope)) { rb_raise(rb_eSecurityError, "Insecure: can't modify trusted binding"); } } else { SafeStringValue(src); } if (argc >= 3) { StringValue(vfile); } if (argc >= 4) { line = NUM2INT(vline); } if (!NIL_P(vfile)) file = RSTRING(vfile)->ptr; if (NIL_P(scope) && ruby_frame->prev) { struct FRAME *prev; VALUE val; prev = ruby_frame; PUSH_FRAME(); *ruby_frame = *prev->prev; ruby_frame->prev = prev; val = eval(self, src, scope, file, line); POP_FRAME(); return val; } return eval(self, src, scope, file, line); }
Replaces the current process by running the given external
command. If exec
is given a single argument, that
argument is taken as a line that is subject to shell expansion before being
executed. If multiple arguments are given, the second and subsequent
arguments are passed as parameters to command with no shell
expansion. If the first argument is a two-element array, the first element
is the command to be executed, and the second argument is used as the
argv[0]
value, which may show up in process listings. In MSDOS
environments, the command is executed in a subshell; otherwise, one of the
exec(2)
system calls is used, so the running command may
inherit some of the environment of the original program (including open
file descriptors).
exec "echo *" # echoes list of files in current directory # never get here exec "echo", "*" # echoes an asterisk # never get here
VALUE rb_f_exec(argc, argv) int argc; VALUE *argv; { VALUE prog = 0; VALUE tmp; struct rb_exec_arg earg; if (argc == 0) { rb_last_status = Qnil; rb_raise(rb_eArgError, "wrong number of arguments"); } tmp = rb_check_array_type(argv[0]); if (!NIL_P(tmp)) { if (RARRAY(tmp)->len != 2) { rb_raise(rb_eArgError, "wrong first argument"); } prog = RARRAY(tmp)->ptr[0]; argv[0] = RARRAY(tmp)->ptr[1]; SafeStringValue(prog); } proc_prepare_args(&earg, argc, argv, prog); proc_exec_args((VALUE)&earg); rb_sys_fail(RSTRING(argv[0])->ptr); return Qnil; /* dummy */ }
Initiates the termination of the Ruby script by raising the
SystemExit
exception. This exception may be caught. The
optional parameter is used to return a status code to the invoking
environment.
begin exit puts "never get here" rescue SystemExit puts "rescued a SystemExit exception" end puts "after begin block"
produces:
rescued a SystemExit exception after begin block
Just prior to termination, Ruby executes any at_exit
functions
(see Kernel::at_exit) and runs any object finalizers (see ObjectSpace.define_finalizer).
at_exit { puts "at_exit function" } ObjectSpace.define_finalizer("string", proc { puts "in finalizer" }) exit
produces:
at_exit function in finalizer
VALUE rb_f_exit(argc, argv) int argc; VALUE *argv; { VALUE status; int istatus; rb_secure(4); if (rb_scan_args(argc, argv, "01", &status) == 1) { switch (status) { case Qtrue: istatus = EXIT_SUCCESS; break; case Qfalse: istatus = EXIT_FAILURE; break; default: istatus = NUM2INT(status); #if EXIT_SUCCESS != 0 if (istatus == 0) istatus = EXIT_SUCCESS; #endif break; } } else { istatus = EXIT_SUCCESS; } rb_exit(istatus); return Qnil; /* not reached */ }
Exits the process immediately. No exit handlers are run. fixnum is returned to the underlying system as the exit status.
Process.exit!(0)
static VALUE rb_f_exit_bang(argc, argv, obj) int argc; VALUE *argv; VALUE obj; { VALUE status; int istatus; rb_secure(4); if (rb_scan_args(argc, argv, "01", &status) == 1) { switch (status) { case Qtrue: istatus = EXIT_SUCCESS; break; case Qfalse: istatus = EXIT_FAILURE; break; default: istatus = NUM2INT(status); break; } } else { istatus = EXIT_FAILURE; } _exit(istatus); return Qnil; /* not reached */ }
With no arguments, raises the exception in $!
or raises a
RuntimeError
if $!
is nil
. With a
single String
argument, raises a RuntimeError
with the string as a message. Otherwise, the first parameter should be the
name of an Exception
class (or an object that returns an
Exception
object when sent an exception
message).
The optional second parameter sets the message associated with the
exception, and the third parameter is an array of callback information.
Exceptions are caught by the rescue
clause of
begin...end
blocks.
raise "Failed to create socket" raise ArgumentError, "No parameters", caller
static VALUE rb_f_raise(argc, argv) int argc; VALUE *argv; { rb_raise_jump(rb_make_exception(argc, argv)); return Qnil; /* not reached */ }
Creates a subprocess. If a block is specified, that block is run in the
subprocess, and the subprocess terminates with a status of zero. Otherwise,
the fork
call returns twice, once in the parent, returning the
process ID of the child, and once in the child, returning nil. The
child process can exit using Kernel.exit!
to avoid running any
at_exit
functions. The parent process should use
Process.wait
to collect the termination statuses of its
children or use Process.detach
to register disinterest in
their status; otherwise, the operating system may accumulate zombie
processes.
The thread calling fork is the only thread in the created child process. fork doesn't copy other threads.
static VALUE rb_f_fork(obj) VALUE obj; { #if !defined(__human68k__) && !defined(_WIN32) && !defined(__MACOS__) && !defined(__EMX__) && !defined(__VMS) int pid; rb_secure(2); #ifndef __VMS fflush(stdout); fflush(stderr); #endif switch (pid = fork()) { case 0: #ifdef linux after_exec(); #endif rb_thread_atfork(); if (rb_block_given_p()) { int status; rb_protect(rb_yield, Qundef, &status); ruby_stop(status); } return Qnil; case -1: rb_sys_fail("fork(2)"); return Qnil; default: return INT2FIX(pid); } #else rb_notimplement(); #endif }
Returns the string resulting from applying format_string to any
additional arguments. Within the format string, any characters other than
format sequences are copied to the result. A format sequence consists of a
percent sign, followed by optional flags, width, and precision indicators,
then terminated with a field type character. The field type controls how
the corresponding sprintf
argument is to be interpreted, while
the flags modify that interpretation. The field type characters are listed
in the table at the end of this section. The flag characters are:
Flag | Applies to | Meaning ---------+--------------+----------------------------------------- space | bdeEfgGiouxX | Leave a space at the start of | | positive numbers. ---------+--------------+----------------------------------------- (digit)$ | all | Specifies the absolute argument number | | for this field. Absolute and relative | | argument numbers cannot be mixed in a | | sprintf string. ---------+--------------+----------------------------------------- # | beEfgGoxX | Use an alternative format. For the | | conversions `o', `x', `X', and `b', | | prefix the result with ``0'', ``0x'', ``0X'', | | and ``0b'', respectively. For `e', | | `E', `f', `g', and 'G', force a decimal | | point to be added, even if no digits follow. | | For `g' and 'G', do not remove trailing zeros. ---------+--------------+----------------------------------------- + | bdeEfgGiouxX | Add a leading plus sign to positive numbers. ---------+--------------+----------------------------------------- - | all | Left-justify the result of this conversion. ---------+--------------+----------------------------------------- 0 (zero) | bdeEfgGiouxX | Pad with zeros, not spaces. ---------+--------------+----------------------------------------- * | all | Use the next argument as the field width. | | If negative, left-justify the result. If the | | asterisk is followed by a number and a dollar | | sign, use the indicated argument as the width.
The field width is an optional integer, followed optionally by a period and
a precision. The width specifies the minimum number of characters that will
be written to the result for this field. For numeric fields, the precision
controls the number of decimal places displayed. For string fields, the
precision determines the maximum number of characters to be copied from the
string. (Thus, the format sequence %10.10s
will always
contribute exactly ten characters to the result.)
The field types are:
Field | Conversion ------+-------------------------------------------------------------- b | Convert argument as a binary number. c | Argument is the numeric code for a single character. d | Convert argument as a decimal number. E | Equivalent to `e', but uses an uppercase E to indicate | the exponent. e | Convert floating point argument into exponential notation | with one digit before the decimal point. The precision | determines the number of fractional digits (defaulting to six). f | Convert floating point argument as [-]ddd.ddd, | where the precision determines the number of digits after | the decimal point. G | Equivalent to `g', but use an uppercase `E' in exponent form. g | Convert a floating point number using exponential form | if the exponent is less than -4 or greater than or | equal to the precision, or in d.dddd form otherwise. i | Identical to `d'. o | Convert argument as an octal number. p | The valuing of argument.inspect. s | Argument is a string to be substituted. If the format | sequence contains a precision, at most that many characters | will be copied. u | Treat argument as an unsigned decimal number. Negative integers | are displayed as a 32 bit two's complement plus one for the | underlying architecture; that is, 2 ** 32 + n. However, since | Ruby has no inherent limit on bits used to represent the | integer, this value is preceded by two dots (..) in order to | indicate a infinite number of leading sign bits. X | Convert argument as a hexadecimal number using uppercase | letters. Negative numbers will be displayed with two | leading periods (representing an infinite string of | leading 'FF's. x | Convert argument as a hexadecimal number. | Negative numbers will be displayed with two | leading periods (representing an infinite string of | leading 'ff's.
Examples:
sprintf("%d %04x", 123, 123) #=> "123 007b" sprintf("%08b '%4s'", 123, 123) #=> "01111011 ' 123'" sprintf("%1$*2$s %2$d %1$s", "hello", 8) #=> " hello 8 hello" sprintf("%1$*2$s %2$d", "hello", -8) #=> "hello -8" sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23) #=> "+1.23: 1.23:1.23" sprintf("%u", -123) #=> "..4294967173"
VALUE rb_f_sprintf(argc, argv) int argc; VALUE *argv; { return rb_str_format(argc - 1, argv + 1, GETNTHARG(0)); }
obsolete
static VALUE rb_f_getc() { rb_warn("getc is obsolete; use STDIN.getc instead"); if (TYPE(rb_stdin) != T_FILE) { return rb_funcall3(rb_stdin, rb_intern("getc"), 0, 0); } return rb_io_getc(rb_stdin); }
Returns (and assigns to $_
) the next line from the list of
files in ARGV
(or $*
), or from standard input if
no files are present on the command line. Returns nil
at end
of file. The optional argument specifies the record separator. The
separator is included with the contents of each record. A separator of
nil
reads the entire contents, and a zero-length separator
reads the input one paragraph at a time, where paragraphs are divided by
two consecutive newlines. If multiple filenames are present in
ARGV
, +gets(nil)+ will read the contents one file at a time.
ARGV << "testfile" print while gets
produces:
This is line one This is line two This is line three And so on...
The style of programming using $_
as an implicit parameter is
gradually losing favor in the Ruby community.
static VALUE rb_f_gets(argc, argv) int argc; VALUE *argv; { VALUE line; if (!next_argv()) return Qnil; if (TYPE(current_file) != T_FILE) { line = rb_funcall3(current_file, rb_intern("gets"), argc, argv); } else { line = argf_getline(argc, argv); } rb_lastline_set(line); return line; }
Returns an array of the names of global variables.
global_variables.grep /std/ #=> ["$stderr", "$stdout", "$stdin"]
VALUE rb_f_global_variables() { VALUE ary = rb_ary_new(); char buf[4]; char *s = "&`'+123456789"; st_foreach(rb_global_tbl, gvar_i, ary); if (!NIL_P(rb_backref_get())) { while (*s) { sprintf(buf, "$%c", *s++); rb_ary_push(ary, rb_str_new2(buf)); } } return ary; }
Equivalent to $_.gsub...
, except that $_
receives
the modified result.
$_ = "quick brown fox" gsub /[aeiou]/, '*' #=> "q**ck br*wn f*x" $_ #=> "q**ck br*wn f*x"
static VALUE rb_f_gsub(argc, argv) int argc; VALUE *argv; { VALUE str = rb_str_dup(uscore_get()); if (NIL_P(rb_str_gsub_bang(argc, argv, str))) return str; rb_lastline_set(str); return str; }
Equivalent to Kernel::gsub
, except nil
is
returned if $_
is not modified.
$_ = "quick brown fox" gsub! /cat/, '*' #=> nil $_ #=> "quick brown fox"
static VALUE rb_f_gsub_bang(argc, argv) int argc; VALUE *argv; { return rb_str_gsub_bang(argc, argv, uscore_get()); }
Returns true
if yield
would execute a block in
the current context. The iterator?
form is mildly deprecated.
def try if block_given? yield else "no block" end end try #=> "no block" try { "hello" } #=> "hello" try do "hello" end #=> "hello"
static VALUE rb_f_block_given_p() { if (ruby_frame->prev && ruby_frame->prev->iter == ITER_CUR && ruby_block) return Qtrue; return Qfalse; }
Equivalent to Proc.new
, except the resulting Proc objects check the number of parameters passed
when called.
static VALUE proc_lambda() { return proc_alloc(rb_cProc, Qtrue); }
Loads and executes the Ruby program in the file filename. If the
filename does not resolve to an absolute path, the file is searched for in
the library directories listed in $:
. If the optional
wrap parameter is true
, the loaded script will be
executed under an anonymous module, protecting the calling program's
global namespace. In no circumstance will any local variables in the loaded
file be propagated to the loading environment.
static VALUE rb_f_load(argc, argv) int argc; VALUE *argv; { VALUE fname, wrap; rb_scan_args(argc, argv, "11", &fname, &wrap); rb_load(fname, RTEST(wrap)); return Qtrue; }
Returns the names of the current local variables.
fred = 1 for i in 1..10 # ... end local_variables #=> ["fred", "i"]
static VALUE rb_f_local_variables() { ID *tbl; int n, i; VALUE ary = rb_ary_new(); struct RVarmap *vars; tbl = ruby_scope->local_tbl; if (tbl) { n = *tbl++; for (i=2; i<n; i++) { /* skip first 2 ($_ and $~) */ if (!rb_is_local_id(tbl[i])) continue; /* skip flip states */ rb_ary_push(ary, rb_str_new2(rb_id2name(tbl[i]))); } } vars = ruby_dyna_vars; while (vars) { if (vars->id && rb_is_local_id(vars->id)) { /* skip $_, $~ and flip states */ rb_ary_push(ary, rb_str_new2(rb_id2name(vars->id))); } vars = vars->next; } return ary; }
Repeatedly executes the block.
loop do print "Input: " line = gets break if !line or line =~ /^qQ/ # ... end
static VALUE rb_f_loop() { for (;;) { rb_yield_0(Qundef, 0, 0, 0, Qfalse); CHECK_INTS; } return Qnil; /* dummy */ }
Invoked by Ruby when obj is sent a message it cannot handle.
symbol is the symbol for the method called, and args are
any arguments that were passed to it. By default, the interpreter raises an
error when this method is called. However, it is possible to override the
method to provide more dynamic behavior. The example below creates a class
Roman
, which responds to methods with names consisting of
roman numerals, returning the corresponding integer values.
class Roman def romanToInt(str) # ... end def method_missing(methId) str = methId.id2name romanToInt(str) end end r = Roman.new r.iv #=> 4 r.xxiii #=> 23 r.mm #=> 2000
static VALUE rb_method_missing(argc, argv, obj) int argc; VALUE *argv; VALUE obj; { ID id; VALUE exc = rb_eNoMethodError; char *format = 0; NODE *cnode = ruby_current_node; if (argc == 0 || !SYMBOL_P(argv[0])) { rb_raise(rb_eArgError, "no id given"); } stack_check(); id = SYM2ID(argv[0]); if (last_call_status & CSTAT_PRIV) { format = "private method `%s' called for %s"; } else if (last_call_status & CSTAT_PROT) { format = "protected method `%s' called for %s"; } else if (last_call_status & CSTAT_VCALL) { format = "undefined local variable or method `%s' for %s"; exc = rb_eNameError; } else if (last_call_status & CSTAT_SUPER) { format = "super: no superclass method `%s'"; } if (!format) { format = "undefined method `%s' for %s"; } ruby_current_node = cnode; { int n = 0; VALUE args[3]; args[n++] = rb_funcall(rb_const_get(exc, rb_intern("message")), '!', 3, rb_str_new2(format), obj, argv[0]); args[n++] = argv[0]; if (exc == rb_eNoMethodError) { args[n++] = rb_ary_new4(argc-1, argv+1); } exc = rb_class_new_instance(n, args, exc); ruby_frame = ruby_frame->prev; /* pop frame for "method_missing" */ rb_exc_raise(exc); } return Qnil; /* not reached */ }
Creates an IO
object connected to the given stream, file, or
subprocess.
If path does not start with a pipe character
(“|
''), treat it as the name of a file to open using
the specified mode (defaulting to “r
''). (See the
table of valid modes on page 331.) If a file is being created, its initial
permissions may be set using the integer third parameter.
If a block is specified, it will be invoked with the File
object as a parameter, and the file will be automatically closed when the
block terminates. The call returns the value of the block.
If path starts with a pipe character, a subprocess is created,
connected to the caller by a pair of pipes. The returned IO
object may be used to write to the standard input and read from the
standard output of this subprocess. If the command following the
“|
'' is a single minus sign, Ruby forks, and this
subprocess is connected to the parent. In the subprocess, the
open
call returns nil
. If the command is not
“-
'', the subprocess runs the command. If a block is
associated with an open("|-")
call, that block will
be run twice—once in the parent and once in the child. The block parameter
will be an IO
object in the parent and nil
in the
child. The parent's IO
object will be connected to the
child's $stdin
and $stdout
. The subprocess
will be terminated at the end of the block.
open("testfile") do |f| print f.gets end
produces:
This is line one
Open a subprocess and read its output:
cmd = open("|date") print cmd.gets cmd.close
produces:
Wed Apr 9 08:56:31 CDT 2003
Open a subprocess running the same Ruby program:
f = open("|-", "w+") if f == nil puts "in Child" exit else puts "Got: #{f.gets}" end
produces:
Got: in Child
Open a subprocess using a block to receive the I/O object:
open("|-") do |f| if f == nil puts "in Child" else puts "Got: #{f.gets}" end end
produces:
Got: in Child
static VALUE rb_f_open(argc, argv) int argc; VALUE *argv; { if (argc >= 1) { char *str = StringValuePtr(argv[0]); if (str[0] == '|') { VALUE tmp = rb_str_new(str+1, RSTRING(argv[0])->len-1); OBJ_INFECT(tmp, argv[0]); argv[0] = tmp; return rb_io_s_popen(argc, argv, rb_cIO); } } return rb_io_s_open(argc, argv, rb_cFile); }
For each object, directly writes obj.inspect
followed
by the current output record separator to the program's standard
output.
S = Struct.new(:name, :state) s = S['dave', 'TX'] p s
produces:
#<S name="dave", state="TX">
static VALUE rb_f_p(argc, argv) int argc; VALUE *argv; { int i; for (i=0; i<argc; i++) { rb_p(argv[i]); } if (TYPE(rb_stdout) == T_FILE) { rb_io_flush(rb_stdout); } return Qnil; }
Prints each object in turn to $stdout
. If the output field
separator ($,
) is not nil
, its contents will
appear between each field. If the output record separator ($\
)
is not nil
, it will be appended to the output. If no arguments
are given, prints $_
. Objects that aren't strings will be
converted by calling their to_s
method.
print "cat", [1,2,3], 99, "\n" $, = ", " $\ = "\n" print "cat", [1,2,3], 99
produces:
cat12399 cat, 1, 2, 3, 99
static VALUE rb_f_print(argc, argv) int argc; VALUE *argv; { rb_io_print(argc, argv, rb_stdout); return Qnil; }
Equivalent to:
io.write(sprintf(string, obj, ...)
or
$stdout.write(sprintf(string, obj, ...)
static VALUE rb_f_printf(argc, argv) int argc; VALUE argv[]; { VALUE out; if (argc == 0) return Qnil; if (TYPE(argv[0]) == T_STRING) { out = rb_stdout; } else { out = argv[0]; argv++; argc--; } rb_io_write(out, rb_f_sprintf(argc, argv)); return Qnil; }
Equivalent to Proc.new
, except the resulting Proc objects check the number of parameters passed
when called.
static VALUE proc_lambda() { return proc_alloc(rb_cProc, Qtrue); }
Equivalent to:
$stdout.putc(int)
static VALUE rb_f_putc(recv, ch) VALUE recv, ch; { return rb_io_putc(rb_stdout, ch); }
Equivalent to
$stdout.puts(obj, ...)
static VALUE rb_f_puts(argc, argv) int argc; VALUE *argv; { rb_io_puts(argc, argv, rb_stdout); return Qnil; }
With no arguments, raises the exception in $!
or raises a
RuntimeError
if $!
is nil
. With a
single String
argument, raises a RuntimeError
with the string as a message. Otherwise, the first parameter should be the
name of an Exception
class (or an object that returns an
Exception
object when sent an exception
message).
The optional second parameter sets the message associated with the
exception, and the third parameter is an array of callback information.
Exceptions are caught by the rescue
clause of
begin...end
blocks.
raise "Failed to create socket" raise ArgumentError, "No parameters", caller
static VALUE rb_f_raise(argc, argv) int argc; VALUE *argv; { rb_raise_jump(rb_make_exception(argc, argv)); return Qnil; /* not reached */ }
Converts max to an integer using max1 = max.to_i.abs
.
If the result is zero, returns a pseudorandom floating point number greater
than or equal to 0.0 and less than 1.0. Otherwise, returns a pseudorandom
integer greater than or equal to zero and less than max1.
Kernel::srand
may be used to ensure repeatable sequences of
random numbers between different runs of the program. Ruby currently uses a
modified Mersenne Twister with a period of 2**19937-1.
srand 1234 #=> 0 [ rand, rand ] #=> [0.191519450163469, 0.49766366626136] [ rand(10), rand(1000) ] #=> [6, 817] srand 1234 #=> 1234 [ rand, rand ] #=> [0.191519450163469, 0.49766366626136]
static VALUE rb_f_rand(argc, argv, obj) int argc; VALUE *argv; VALUE obj; { VALUE vmax; long val, max; rb_scan_args(argc, argv, "01", &vmax); switch (TYPE(vmax)) { case T_FLOAT: if (RFLOAT(vmax)->value <= LONG_MAX && RFLOAT(vmax)->value >= LONG_MIN) { max = (long)RFLOAT(vmax)->value; break; } if (RFLOAT(vmax)->value < 0) vmax = rb_dbl2big(-RFLOAT(vmax)->value); else vmax = rb_dbl2big(RFLOAT(vmax)->value); /* fall through */ case T_BIGNUM: bignum: { struct RBignum *limit = (struct RBignum *)vmax; if (!limit->sign) { limit = (struct RBignum *)rb_big_clone(vmax); limit->sign = 1; } limit = (struct RBignum *)rb_big_minus((VALUE)limit, INT2FIX(1)); if (FIXNUM_P((VALUE)limit)) { if (FIX2LONG((VALUE)limit) == -1) return rb_float_new(genrand_real()); return LONG2NUM(limited_rand(FIX2LONG((VALUE)limit))); } return limited_big_rand(limit); } case T_NIL: max = 0; break; default: vmax = rb_Integer(vmax); if (TYPE(vmax) == T_BIGNUM) goto bignum; /* fall through */ case T_FIXNUM: max = FIX2LONG(vmax); break; } if (max == 0) { return rb_float_new(genrand_real()); } if (max < 0) max = -max; val = limited_rand(max-1); return LONG2NUM(val); }
Equivalent to Kernel::gets
, except readline
raises EOFError
at end of file.
static VALUE rb_f_readline(argc, argv) int argc; VALUE *argv; { VALUE line; if (!next_argv()) rb_eof_error(); ARGF_FORWARD(argc, argv); line = rb_f_gets(argc, argv); if (NIL_P(line)) { rb_eof_error(); } return line; }
Returns an array containing the lines returned by calling
Kernel.gets(separator)
until the end of file.
static VALUE rb_f_readlines(argc, argv) int argc; VALUE *argv; { VALUE line, ary; NEXT_ARGF_FORWARD(argc, argv); ary = rb_ary_new(); while (!NIL_P(line = argf_getline(argc, argv))) { rb_ary_push(ary, line); } return ary; }
Ruby tries to load the library named string, returning
true
if successful. If the filename does not resolve to an
absolute path, it will be searched for in the directories listed in
$:
. If the file has the extension “.rb'', it is loaded
as a source file; if the extension is “.so'', “.o'', or
“.dll'', or whatever the default shared library extension is on the
current platform, Ruby loads the shared library as a Ruby extension.
Otherwise, Ruby tries adding “.rb'', “.so'', and so on to
the name. The name of the loaded feature is added to the array in
$"
. A feature will not be loaded if it's name already
appears in $"
. However, the file name is not converted to
an absolute path, so that “require 'a';require
'./a'
'' will load a.rb
twice.
require "my-library.rb" require "db-driver"
VALUE rb_f_require(obj, fname) VALUE obj, fname; { return rb_require_safe(fname, ruby_safe_level); }
Equivalent to calling $_.scan
. See String#scan
.
static VALUE rb_f_scan(self, pat) VALUE self, pat; { return rb_str_scan(uscore_get(), pat); }
See Kernel#select
.
static VALUE rb_f_select(argc, argv, obj) int argc; VALUE *argv; VALUE obj; { VALUE read, write, except, timeout, res, list; fd_set rset, wset, eset, pset; fd_set *rp, *wp, *ep; struct timeval *tp, timerec; OpenFile *fptr; long i; int max = 0, n; int interrupt_flag = 0; int pending = 0; rb_scan_args(argc, argv, "13", &read, &write, &except, &timeout); if (NIL_P(timeout)) { tp = 0; } else { timerec = rb_time_interval(timeout); tp = &timerec; } FD_ZERO(&pset); if (!NIL_P(read)) { Check_Type(read, T_ARRAY); rp = &rset; FD_ZERO(rp); for (i=0; i<RARRAY(read)->len; i++) { GetOpenFile(rb_io_get_io(RARRAY(read)->ptr[i]), fptr); FD_SET(fileno(fptr->f), rp); if (READ_DATA_PENDING(fptr->f)) { /* check for buffered data */ pending++; FD_SET(fileno(fptr->f), &pset); } if (max < fileno(fptr->f)) max = fileno(fptr->f); } if (pending) { /* no blocking if there's buffered data */ timerec.tv_sec = timerec.tv_usec = 0; tp = &timerec; } } else rp = 0; if (!NIL_P(write)) { Check_Type(write, T_ARRAY); wp = &wset; FD_ZERO(wp); for (i=0; i<RARRAY(write)->len; i++) { GetOpenFile(rb_io_get_io(RARRAY(write)->ptr[i]), fptr); FD_SET(fileno(fptr->f), wp); if (max < fileno(fptr->f)) max = fileno(fptr->f); if (fptr->f2) { FD_SET(fileno(fptr->f2), wp); if (max < fileno(fptr->f2)) max = fileno(fptr->f2); } } } else wp = 0; if (!NIL_P(except)) { Check_Type(except, T_ARRAY); ep = &eset; FD_ZERO(ep); for (i=0; i<RARRAY(except)->len; i++) { GetOpenFile(rb_io_get_io(RARRAY(except)->ptr[i]), fptr); FD_SET(fileno(fptr->f), ep); if (max < fileno(fptr->f)) max = fileno(fptr->f); if (fptr->f2) { FD_SET(fileno(fptr->f2), ep); if (max < fileno(fptr->f2)) max = fileno(fptr->f2); } } } else { ep = 0; } max++; n = rb_thread_select(max, rp, wp, ep, tp); if (n < 0) { rb_sys_fail(0); } if (!pending && n == 0) return Qnil; /* returns nil on timeout */ res = rb_ary_new2(3); rb_ary_push(res, rp?rb_ary_new():rb_ary_new2(0)); rb_ary_push(res, wp?rb_ary_new():rb_ary_new2(0)); rb_ary_push(res, ep?rb_ary_new():rb_ary_new2(0)); if (interrupt_flag == 0) { if (rp) { list = RARRAY(res)->ptr[0]; for (i=0; i< RARRAY(read)->len; i++) { GetOpenFile(rb_io_get_io(RARRAY(read)->ptr[i]), fptr); if (FD_ISSET(fileno(fptr->f), rp) || FD_ISSET(fileno(fptr->f), &pset)) { rb_ary_push(list, rb_ary_entry(read, i)); } } } if (wp) { list = RARRAY(res)->ptr[1]; for (i=0; i< RARRAY(write)->len; i++) { GetOpenFile(rb_io_get_io(RARRAY(write)->ptr[i]), fptr); if (FD_ISSET(fileno(fptr->f), wp)) { rb_ary_push(list, rb_ary_entry(write, i)); } else if (fptr->f2 && FD_ISSET(fileno(fptr->f2), wp)) { rb_ary_push(list, rb_ary_entry(write, i)); } } } if (ep) { list = RARRAY(res)->ptr[2]; for (i=0; i< RARRAY(except)->len; i++) { GetOpenFile(rb_io_get_io(RARRAY(except)->ptr[i]), fptr); if (FD_ISSET(fileno(fptr->f), ep)) { rb_ary_push(list, rb_ary_entry(except, i)); } else if (fptr->f2 && FD_ISSET(fileno(fptr->f2), ep)) { rb_ary_push(list, rb_ary_entry(except, i)); } } } } return res; /* returns an empty array on interrupt */ }
Establishes proc as the handler for tracing, or disables tracing
if the parameter is nil
. proc takes up to six
parameters: an event name, a filename, a line number, an object id, a
binding, and the name of a class. proc is invoked whenever an
event occurs. Events are: c-call
(call a C-language routine),
c-return
(return from a C-language routine), call
(call a Ruby method), class
(start a class or module
definition), end
(finish a class or module definition),
line
(execute code on a new line), raise
(raise
an exception), and return
(return from a Ruby method). Tracing
is disabled within the context of proc.
class Test def test a = 1 b = 2 end end set_trace_func proc { |event, file, line, id, binding, classname| printf "%8s %s:%-2d %10s %8s\n", event, file, line, id, classname } t = Test.new t.test line prog.rb:11 false c-call prog.rb:11 new Class c-call prog.rb:11 initialize Object c-return prog.rb:11 initialize Object c-return prog.rb:11 new Class line prog.rb:12 false call prog.rb:2 test Test line prog.rb:3 test Test line prog.rb:4 test Test return prog.rb:4 test Test
static VALUE set_trace_func(obj, trace) VALUE obj, trace; { rb_event_hook_t *hook; rb_secure(4); if (NIL_P(trace)) { trace_func = 0; rb_remove_event_hook(call_trace_func); return Qnil; } if (!rb_obj_is_proc(trace)) { rb_raise(rb_eTypeError, "trace_func needs to be Proc"); } trace_func = trace; for (hook = event_hooks; hook; hook = hook->next) { if (hook->func == call_trace_func) return trace; } rb_add_event_hook(call_trace_func, RUBY_EVENT_ALL); return trace; }
Suspends the current thread for duration seconds (which may be any
number, including a Float
with fractional seconds). Returns
the actual number of seconds slept (rounded), which may be less than that
asked for if another thread calls Thread#run
. Zero arguments
causes sleep
to sleep forever.
Time.new #=> Wed Apr 09 08:56:32 CDT 2003 sleep 1.2 #=> 1 Time.new #=> Wed Apr 09 08:56:33 CDT 2003 sleep 1.9 #=> 2 Time.new #=> Wed Apr 09 08:56:35 CDT 2003
static VALUE rb_f_sleep(argc, argv) int argc; VALUE *argv; { int beg, end; beg = time(0); if (argc == 0) { rb_thread_sleep_forever(); } else if (argc == 1) { rb_thread_wait_for(rb_time_interval(argv[0])); } else { rb_raise(rb_eArgError, "wrong number of arguments"); } end = time(0) - beg; return INT2FIX(end); }
Equivalent to $_.split(pattern, limit)
. See
String#split
.
static VALUE rb_f_split(argc, argv) int argc; VALUE *argv; { return rb_str_split_m(argc, argv, uscore_get()); }
Returns the string resulting from applying format_string to any
additional arguments. Within the format string, any characters other than
format sequences are copied to the result. A format sequence consists of a
percent sign, followed by optional flags, width, and precision indicators,
then terminated with a field type character. The field type controls how
the corresponding sprintf
argument is to be interpreted, while
the flags modify that interpretation. The field type characters are listed
in the table at the end of this section. The flag characters are:
Flag | Applies to | Meaning ---------+--------------+----------------------------------------- space | bdeEfgGiouxX | Leave a space at the start of | | positive numbers. ---------+--------------+----------------------------------------- (digit)$ | all | Specifies the absolute argument number | | for this field. Absolute and relative | | argument numbers cannot be mixed in a | | sprintf string. ---------+--------------+----------------------------------------- # | beEfgGoxX | Use an alternative format. For the | | conversions `o', `x', `X', and `b', | | prefix the result with ``0'', ``0x'', ``0X'', | | and ``0b'', respectively. For `e', | | `E', `f', `g', and 'G', force a decimal | | point to be added, even if no digits follow. | | For `g' and 'G', do not remove trailing zeros. ---------+--------------+----------------------------------------- + | bdeEfgGiouxX | Add a leading plus sign to positive numbers. ---------+--------------+----------------------------------------- - | all | Left-justify the result of this conversion. ---------+--------------+----------------------------------------- 0 (zero) | bdeEfgGiouxX | Pad with zeros, not spaces. ---------+--------------+----------------------------------------- * | all | Use the next argument as the field width. | | If negative, left-justify the result. If the | | asterisk is followed by a number and a dollar | | sign, use the indicated argument as the width.
The field width is an optional integer, followed optionally by a period and
a precision. The width specifies the minimum number of characters that will
be written to the result for this field. For numeric fields, the precision
controls the number of decimal places displayed. For string fields, the
precision determines the maximum number of characters to be copied from the
string. (Thus, the format sequence %10.10s
will always
contribute exactly ten characters to the result.)
The field types are:
Field | Conversion ------+-------------------------------------------------------------- b | Convert argument as a binary number. c | Argument is the numeric code for a single character. d | Convert argument as a decimal number. E | Equivalent to `e', but uses an uppercase E to indicate | the exponent. e | Convert floating point argument into exponential notation | with one digit before the decimal point. The precision | determines the number of fractional digits (defaulting to six). f | Convert floating point argument as [-]ddd.ddd, | where the precision determines the number of digits after | the decimal point. G | Equivalent to `g', but use an uppercase `E' in exponent form. g | Convert a floating point number using exponential form | if the exponent is less than -4 or greater than or | equal to the precision, or in d.dddd form otherwise. i | Identical to `d'. o | Convert argument as an octal number. p | The valuing of argument.inspect. s | Argument is a string to be substituted. If the format | sequence contains a precision, at most that many characters | will be copied. u | Treat argument as an unsigned decimal number. Negative integers | are displayed as a 32 bit two's complement plus one for the | underlying architecture; that is, 2 ** 32 + n. However, since | Ruby has no inherent limit on bits used to represent the | integer, this value is preceded by two dots (..) in order to | indicate a infinite number of leading sign bits. X | Convert argument as a hexadecimal number using uppercase | letters. Negative numbers will be displayed with two | leading periods (representing an infinite string of | leading 'FF's. x | Convert argument as a hexadecimal number. | Negative numbers will be displayed with two | leading periods (representing an infinite string of | leading 'ff's.
Examples:
sprintf("%d %04x", 123, 123) #=> "123 007b" sprintf("%08b '%4s'", 123, 123) #=> "01111011 ' 123'" sprintf("%1$*2$s %2$d %1$s", "hello", 8) #=> " hello 8 hello" sprintf("%1$*2$s %2$d", "hello", -8) #=> "hello -8" sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23) #=> "+1.23: 1.23:1.23" sprintf("%u", -123) #=> "..4294967173"
VALUE rb_f_sprintf(argc, argv) int argc; VALUE *argv; { return rb_str_format(argc - 1, argv + 1, GETNTHARG(0)); }
Seeds the pseudorandom number generator to the value of
number.to_i.abs
. If number is omitted, seeds
the generator using a combination of the time, the process id, and a
sequence number. (This is also the behavior if Kernel::rand
is
called without previously calling srand
, but without the
sequence.) By setting the seed to a known value, scripts can be made
deterministic during testing. The previous seed value is returned. Also see
Kernel::rand
.
static VALUE rb_f_srand(argc, argv, obj) int argc; VALUE *argv; VALUE obj; { VALUE seed, old; rb_secure(4); if (rb_scan_args(argc, argv, "01", &seed) == 0) { seed = random_seed(); } old = rand_init(seed); return old; }
Equivalent to $_.sub(args)
, except that
$_
will be updated if substitution occurs.
static VALUE rb_f_sub(argc, argv) int argc; VALUE *argv; { VALUE str = rb_str_dup(uscore_get()); if (NIL_P(rb_str_sub_bang(argc, argv, str))) return str; rb_lastline_set(str); return str; }
Equivalent to $_.sub!(args)
.
static VALUE rb_f_sub_bang(argc, argv) int argc; VALUE *argv; { return rb_str_sub_bang(argc, argv, uscore_get()); }
Calls the operating system function identified by fixnum, passing
in the arguments, which must be either String
objects, or
Integer
objects that ultimately fit within a native
long
. Up to nine parameters may be passed (14 on the
Atari-ST). The function identified by fixnum is system dependent.
On some Unix systems, the numbers may be obtained from a header file called
syscall.h
.
syscall 4, 1, "hello\n", 6 # '4' is write(2) on our box
produces:
hello
static VALUE rb_f_syscall(argc, argv) int argc; VALUE *argv; { #if defined(HAVE_SYSCALL) && !defined(__CHECKER__) #ifdef atarist unsigned long arg[14]; /* yes, we really need that many ! */ #else unsigned long arg[8]; #endif int retval = -1; int i = 1; int items = argc - 1; /* This probably won't work on machines where sizeof(long) != sizeof(int) * or where sizeof(long) != sizeof(char*). But such machines will * not likely have syscall implemented either, so who cares? */ rb_secure(2); if (argc == 0) rb_raise(rb_eArgError, "too few arguments for syscall"); if (argc > sizeof(arg) / sizeof(arg[0])) rb_raise(rb_eArgError, "too many arguments for syscall"); arg[0] = NUM2LONG(argv[0]); argv++; while (items--) { VALUE v = rb_check_string_type(*argv); if (!NIL_P(v)) { StringValue(v); rb_str_modify(v); arg[i] = (unsigned long)StringValueCStr(v); } else { arg[i] = (unsigned long)NUM2LONG(*argv); } argv++; i++; } TRAP_BEG; switch (argc) { case 1: retval = syscall(arg[0]); break; case 2: retval = syscall(arg[0],arg[1]); break; case 3: retval = syscall(arg[0],arg[1],arg[2]); break; case 4: retval = syscall(arg[0],arg[1],arg[2],arg[3]); break; case 5: retval = syscall(arg[0],arg[1],arg[2],arg[3],arg[4]); break; case 6: retval = syscall(arg[0],arg[1],arg[2],arg[3],arg[4],arg[5]); break; case 7: retval = syscall(arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6]); break; case 8: retval = syscall(arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6], arg[7]); break; #ifdef atarist case 9: retval = syscall(arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6], arg[7], arg[8]); break; case 10: retval = syscall(arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6], arg[7], arg[8], arg[9]); break; case 11: retval = syscall(arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6], arg[7], arg[8], arg[9], arg[10]); break; case 12: retval = syscall(arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6], arg[7], arg[8], arg[9], arg[10], arg[11]); break; case 13: retval = syscall(arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6], arg[7], arg[8], arg[9], arg[10], arg[11], arg[12]); break; case 14: retval = syscall(arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6], arg[7], arg[8], arg[9], arg[10], arg[11], arg[12], arg[13]); break; #endif /* atarist */ } TRAP_END; if (retval < 0) rb_sys_fail(0); return INT2NUM(retval); #else rb_notimplement(); return Qnil; /* not reached */ #endif }
Executes cmd in a subshell, returning true
if the
command was found and ran successfully, false
otherwise. An
error status is available in $?
. The arguments are processed
in the same way as for Kernel::exec
.
system("echo *") system("echo", "*")
produces:
config.h main.rb *
static VALUE rb_f_system(argc, argv) int argc; VALUE *argv; { int status; #if defined(__EMX__) VALUE cmd; fflush(stdout); fflush(stderr); if (argc == 0) { rb_last_status = Qnil; rb_raise(rb_eArgError, "wrong number of arguments"); } if (TYPE(argv[0]) == T_ARRAY) { if (RARRAY(argv[0])->len != 2) { rb_raise(rb_eArgError, "wrong first argument"); } argv[0] = RARRAY(argv[0])->ptr[0]; } cmd = rb_ary_join(rb_ary_new4(argc, argv), rb_str_new2(" ")); SafeStringValue(cmd); status = do_spawn(RSTRING(cmd)->ptr); last_status_set(status, 0); #elif defined(__human68k__) || defined(__DJGPP__) || defined(_WIN32) volatile VALUE prog = 0; fflush(stdout); fflush(stderr); if (argc == 0) { rb_last_status = Qnil; rb_raise(rb_eArgError, "wrong number of arguments"); } if (TYPE(argv[0]) == T_ARRAY) { if (RARRAY(argv[0])->len != 2) { rb_raise(rb_eArgError, "wrong first argument"); } prog = RARRAY(argv[0])->ptr[0]; argv[0] = RARRAY(argv[0])->ptr[1]; } if (argc == 1 && prog == 0) { #if defined(_WIN32) SafeStringValue(argv[0]); status = do_spawn(P_WAIT, StringValueCStr(argv[0])); #else status = proc_spawn(argv[0]); #endif } else { status = proc_spawn_n(argc, argv, prog); } #if !defined(_WIN32) last_status_set(status == -1 ? 127 : status, 0); #else if (status == -1) last_status_set(0x7f << 8, 0); #endif #elif defined(__VMS) VALUE cmd; if (argc == 0) { rb_last_status = Qnil; rb_raise(rb_eArgError, "wrong number of arguments"); } if (TYPE(argv[0]) == T_ARRAY) { if (RARRAY(argv[0])->len != 2) { rb_raise(rb_eArgError, "wrong first argument"); } argv[0] = RARRAY(argv[0])->ptr[0]; } cmd = rb_ary_join(rb_ary_new4(argc, argv), rb_str_new2(" ")); SafeStringValue(cmd); status = system(StringValueCStr(cmd)); last_status_set((status & 0xff) << 8, 0); #else volatile VALUE prog = 0; int pid; struct rb_exec_arg earg; RETSIGTYPE (*chfunc)(int); fflush(stdout); fflush(stderr); if (argc == 0) { rb_last_status = Qnil; rb_raise(rb_eArgError, "wrong number of arguments"); } if (TYPE(argv[0]) == T_ARRAY) { if (RARRAY(argv[0])->len != 2) { rb_raise(rb_eArgError, "wrong first argument"); } prog = RARRAY(argv[0])->ptr[0]; argv[0] = RARRAY(argv[0])->ptr[1]; } proc_prepare_args(&earg, argc, argv, prog); chfunc = signal(SIGCHLD, SIG_DFL); retry: pid = fork(); if (pid == 0) { /* child process */ rb_thread_atfork(); rb_protect(proc_exec_args, (VALUE)&earg, NULL); _exit(127); } if (pid < 0) { if (errno == EAGAIN) { rb_thread_sleep(1); goto retry; } } else { rb_syswait(pid); } signal(SIGCHLD, chfunc); if (pid < 0) rb_sys_fail(0); status = NUM2INT(rb_last_status); #endif if (status == EXIT_SUCCESS) return Qtrue; return Qfalse; }
Uses the integer <i>aCmd</i> to perform various tests on <i>file1</i> (first table below) or on <i>file1</i> and <i>file2</i> (second table). File tests on a single file: Test Returns Meaning ?A | Time | Last access time for file1 ?b | boolean | True if file1 is a block device ?c | boolean | True if file1 is a character device ?C | Time | Last change time for file1 ?d | boolean | True if file1 exists and is a directory ?e | boolean | True if file1 exists ?f | boolean | True if file1 exists and is a regular file ?g | boolean | True if file1 has the \CF{setgid} bit | | set (false under NT) ?G | boolean | True if file1 exists and has a group | | ownership equal to the caller's group ?k | boolean | True if file1 exists and has the sticky bit set ?l | boolean | True if file1 exists and is a symbolic link ?M | Time | Last modification time for file1 ?o | boolean | True if file1 exists and is owned by | | the caller's effective uid ?O | boolean | True if file1 exists and is owned by | | the caller's real uid ?p | boolean | True if file1 exists and is a fifo ?r | boolean | True if file1 is readable by the effective | | uid/gid of the caller ?R | boolean | True if file is readable by the real | | uid/gid of the caller ?s | int/nil | If file1 has nonzero size, return the size, | | otherwise return nil ?S | boolean | True if file1 exists and is a socket ?u | boolean | True if file1 has the setuid bit set ?w | boolean | True if file1 exists and is writable by | | the effective uid/gid ?W | boolean | True if file1 exists and is writable by | | the real uid/gid ?x | boolean | True if file1 exists and is executable by | | the effective uid/gid ?X | boolean | True if file1 exists and is executable by | | the real uid/gid ?z | boolean | True if file1 exists and has a zero length
Tests that take two files:
?- | boolean | True if file1 and file2 are identical ?= | boolean | True if the modification times of file1 | | and file2 are equal ?< | boolean | True if the modification time of file1 | | is prior to that of file2 ?> | boolean | True if the modification time of file1 | | is after that of file2
static VALUE rb_f_test(argc, argv) int argc; VALUE *argv; { int cmd; if (argc == 0) rb_raise(rb_eArgError, "wrong number of arguments"); #if 0 /* 1.7 behavior? */ if (argc == 1) { return RTEST(argv[0]) ? Qtrue : Qfalse; } #endif cmd = NUM2CHR(argv[0]); if (cmd == 0) return Qfalse; if (strchr("bcdefgGkloOprRsSuwWxXz", cmd)) { CHECK(1); switch (cmd) { case 'b': return test_b(0, argv[1]); case 'c': return test_c(0, argv[1]); case 'd': return test_d(0, argv[1]); case 'a': case 'e': return test_e(0, argv[1]); case 'f': return test_f(0, argv[1]); case 'g': return test_sgid(0, argv[1]); case 'G': return test_grpowned(0, argv[1]); case 'k': return test_sticky(0, argv[1]); case 'l': return test_l(0, argv[1]); case 'o': return test_owned(0, argv[1]); case 'O': return test_rowned(0, argv[1]); case 'p': return test_p(0, argv[1]); case 'r': return test_r(0, argv[1]); case 'R': return test_R(0, argv[1]); case 's': return test_s(0, argv[1]); case 'S': return test_S(0, argv[1]); case 'u': return test_suid(0, argv[1]); case 'w': return test_w(0, argv[1]); case 'W': return test_W(0, argv[1]); case 'x': return test_x(0, argv[1]); case 'X': return test_X(0, argv[1]); case 'z': return test_z(0, argv[1]); } } if (strchr("MAC", cmd)) { struct stat st; CHECK(1); if (rb_stat(argv[1], &st) == -1) { rb_sys_fail(RSTRING(argv[1])->ptr); } switch (cmd) { case 'A': return rb_time_new(st.st_atime, 0); case 'M': return rb_time_new(st.st_mtime, 0); case 'C': return rb_time_new(st.st_ctime, 0); } } if (cmd == '-') { CHECK(2); return test_identical(0, argv[1], argv[2]); } if (strchr("=<>", cmd)) { struct stat st1, st2; CHECK(2); if (rb_stat(argv[1], &st1) < 0) return Qfalse; if (rb_stat(argv[2], &st2) < 0) return Qfalse; switch (cmd) { case '=': if (st1.st_mtime == st2.st_mtime) return Qtrue; return Qfalse; case '>': if (st1.st_mtime > st2.st_mtime) return Qtrue; return Qfalse; case '<': if (st1.st_mtime < st2.st_mtime) return Qtrue; return Qfalse; } } /* unknown command */ rb_raise(rb_eArgError, "unknown command ?%c", cmd); return Qnil; /* not reached */ }
Transfers control to the end of the active catch
block waiting
for symbol. Raises NameError
if there is no
catch
block for the symbol. The optional second parameter
supplies a return value for the catch
block, which otherwise
defaults to nil
. For examples, see Kernel::catch
.
static VALUE rb_f_throw(argc, argv) int argc; VALUE *argv; { VALUE tag, value; struct tag *tt = prot_tag; rb_scan_args(argc, argv, "11", &tag, &value); tag = ID2SYM(rb_to_id(tag)); while (tt) { if (tt->tag == tag) { tt->dst = tag; tt->retval = value; break; } if (tt->tag == PROT_THREAD) { rb_raise(rb_eThreadError, "uncaught throw `%s' in thread 0x%lx", rb_id2name(SYM2ID(tag)), curr_thread); } tt = tt->prev; } if (!tt) { rb_name_error(SYM2ID(tag), "uncaught throw `%s'", rb_id2name(SYM2ID(tag))); } rb_trap_restore_mask(); JUMP_TAG(TAG_THROW); #ifndef __GNUC__ return Qnil; /* not reached */ #endif }
Controls tracing of assignments to global variables. The parameter +symbol_
identifies the variable (as either a string name or a symbol identifier).
cmd (which may be a string or a Proc
object) or block
is executed whenever the variable is assigned. The block or
Proc
object receives the variable's new value as a
parameter. Also see Kernel::untrace_var
.
trace_var :$_, proc {|v| puts "$_ is now '#{v}'" } $_ = "hello" $_ = ' there'
produces:
$_ is now 'hello' $_ is now ' there'
VALUE rb_f_trace_var(argc, argv) int argc; VALUE *argv; { VALUE var, cmd; struct global_entry *entry; struct trace_var *trace; rb_secure(4); if (rb_scan_args(argc, argv, "11", &var, &cmd) == 1) { cmd = rb_block_proc(); } if (NIL_P(cmd)) { return rb_f_untrace_var(argc, argv); } entry = rb_global_entry(rb_to_id(var)); if (OBJ_TAINTED(cmd)) { rb_raise(rb_eSecurityError, "Insecure: tainted variable trace"); } trace = ALLOC(struct trace_var); trace->next = entry->var->trace; trace->func = rb_trace_eval; trace->data = cmd; trace->removed = 0; entry->var->trace = trace; return Qnil; }
Specifies the handling of signals. The first parameter is a signal name (a string such as “SIGALRM'', “SIGUSR1'', and so on) or a signal number. The characters “SIG'' may be omitted from the signal name. The command or block specifies code to be run when the signal is raised. If the command is the string “IGNORE'' or “SIG_IGN'', the signal will be ignored. If the command is “DEFAULT'' or “SIG_DFL'', the operating system's default handler will be invoked. If the command is “EXIT'', the script will be terminated by the signal. Otherwise, the given command or block will be run. The special signal name “EXIT'' or signal number zero will be invoked just prior to program termination. trap returns the previous handler for the given signal.
Signal.trap(0, proc { puts "Terminating: #{$$}" }) Signal.trap("CLD") { puts "Child died" } fork && Process.wait
produces:
Terminating: 27461 Child died Terminating: 27460
static VALUE sig_trap(argc, argv) int argc; VALUE *argv; { struct trap_arg arg; rb_secure(2); if (argc == 0 || argc > 2) { rb_raise(rb_eArgError, "wrong number of arguments -- trap(sig, cmd)/trap(sig){...}"); } arg.sig = argv[0]; if (argc == 1) { arg.cmd = rb_block_proc(); } else if (argc == 2) { arg.cmd = argv[1]; } if (OBJ_TAINTED(arg.cmd)) { rb_raise(rb_eSecurityError, "Insecure: tainted signal trap"); } #if USE_TRAP_MASK /* disable interrupt */ # ifdef HAVE_SIGPROCMASK sigfillset(&arg.mask); sigprocmask(SIG_BLOCK, &arg.mask, &arg.mask); # else arg.mask = sigblock(~0); # endif return rb_ensure(trap, (VALUE)&arg, trap_ensure, (VALUE)&arg); #else return trap(&arg); #endif }
Removes tracing for the specified command on the given global variable and
returns nil
. If no command is specified, removes all tracing
for that variable and returns an array containing the commands actually
removed.
VALUE rb_f_untrace_var(argc, argv) int argc; VALUE *argv; { VALUE var, cmd; ID id; struct global_entry *entry; struct trace_var *trace; rb_secure(4); rb_scan_args(argc, argv, "11", &var, &cmd); id = rb_to_id(var); if (!st_lookup(rb_global_tbl, id, (st_data_t *)&entry)) { rb_name_error(id, "undefined global variable %s", rb_id2name(id)); } trace = entry->var->trace; if (NIL_P(cmd)) { VALUE ary = rb_ary_new(); while (trace) { struct trace_var *next = trace->next; rb_ary_push(ary, (VALUE)trace->data); trace->removed = 1; trace = next; } if (!entry->var->block_trace) remove_trace(entry->var); return ary; } else { while (trace) { if (trace->data == cmd) { trace->removed = 1; if (!entry->var->block_trace) remove_trace(entry->var); return rb_ary_new3(1, cmd); } trace = trace->next; } } return Qnil; }
Display the given message (followed by a newline) on STDERR unless warnings
are disabled (for example with the -W0
flag).
static VALUE rb_warn_m(self, mesg) VALUE self, mesg; { if (!NIL_P(ruby_verbose)) { rb_io_write(rb_stderr, mesg); rb_io_write(rb_stderr, rb_default_rs); } return Qnil; }